精英家教网 > 初中数学 > 题目详情

如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.

(1)求证:DE⊥AG;

(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.

①在旋转过程中,当∠OAG′是直角时,求α的度数;

②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.


解:(1)如图1,延长ED交AG于点H,

∵点O是正方形ABCD两对角线的交点,

∴OA=OD,OA⊥OD,

∵OG=OE,

在△AOG和△DOE中,

∴△AOG≌△DOE,

∴∠AGO=∠DEO,

∵∠AGO+∠GAO=90°,

∴∠AGO+∠DEO=90°,

∴∠AHE=90°,

即DE⊥AG;

(2)①在旋转过程中,∠OAG′成为直角有两种情况:

(Ⅰ)α由0°增大到90°过程中,当∠OAG′=90°时,

∵OA=OD=OG=OG′,

∴在Rt△OAG′中,sin∠AG′O==

∴∠AG′O=30°,

∵OA⊥OD,OA⊥AG′,

∴OD∥AG′,

∴∠DOG′=∠AG′O=30°,

即α=30°;

(Ⅱ)α由90°增大到180°过程中,当∠OAG′=90°时,

同理可求∠BOG′=30°,

∴α=180°﹣30°=150°.

综上所述,当∠OAG′=90°时,α=30°或150°.

②如图3,当旋转到A、O、F′在一条直线上时,AF′的长最大,

∵正方形ABCD的边长为1,

∴OA=OD=OC=OB=

∵OG=2OD,

∴OG′=OG=

∴OF′=2,

∴AF′=AO+OF′=+2,

∵∠COE′=45°,

∴此时α=315°.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


在△ABC中,D、E为边AB、AC的中点,已知△ADE的面积为4,那么△ABC的面积是(  )

 

A.

8

B.

12

C.

16

D.

20

查看答案和解析>>

科目:初中数学 来源: 题型:


在平行四边形ABCD中,将△BCD沿BD翻折,使点C落在点E处,BE和AD相交于点O,求证:OA=OE.

 

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是(  )

 

A.

cm2

B.

cm2

C.

cm2

D.

cm2

查看答案和解析>>

科目:初中数学 来源: 题型:


正比例函数y1=mx(m>0)的图象与反比例函数y2=(k≠0)的图象交于点A(n,4)和点B,AM⊥y轴,垂足为M.若△AMB的面积为8,则满足y1>y2的实数x的取值范围是 

查看答案和解析>>

科目:初中数学 来源: 题型:


使二次根式的有意义的x的取值范围是(  )

 

A.

x>0

B.

x>1

C.

x≥1

D.

x≠1

查看答案和解析>>

科目:初中数学 来源: 题型:


因式分解:x2﹣1= 

查看答案和解析>>

科目:初中数学 来源: 题型:


已知E,F分别为正方形ABCD的边BC,CD上的点,AF,DE相交于点G,当E,F分别为边BC,CD的中点时,有:①AF=DE;②AF⊥DE成立.

试探究下列问题:

(1)如图1,若点E不是边BC的中点,F不是边CD的中点,且CE=DF,上述结论①,②是否仍然成立?(请直接回答“成立”或“不成立”),不需要证明)

(2)如图2,若点E,F分别在CB的延长线和DC的延长线上,且CE=DF,此时,上述结论①,②是否仍然成立?若成立,请写出证明过程,若不成立,请说明理由;

(3)如图3,在(2)的基础上,连接AE和BF,若点M,N,P,Q分别为AE,EF,FD,AD的中点,请判断四边形MNPQ是“矩形、菱形、正方形”中的哪一种,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在▱ABCD中,E、F为对角线AC上两点,且BE∥DF,请从图中找出一对全等三角形:  

查看答案和解析>>

同步练习册答案