精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABCD中,点PAB边上一点不与AB重合,过点作,交AD边于点Q,连结CQ

,求证:四边形ABCD是矩形;

的条件下,当时,求AQ的长.

【答案】1)证明过程见解析;(2AQ的长为.

【解析】

1)根据 求出∠A=90°即可;

2)由HL证明RTDCQRTPCQ,得出DQ=PQ,再根据勾股定理即可算出AQ的值.

1)证明:∵

∴∠BPC+APQ=90°

又∵

∴∠APQ+AQP=90°

∴∠A=90°

ABCD为平行四边形

ABCD为矩形.

2)设AQ=x,则DQ=6-x

RTDCQRTPCQ

RTDCQRTPCQ

DQ=PQ=6-x

RTAPQ中,

解得:

AQ的长为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,ABC中,ABAC,点PABC内一点,∠APB=∠BAC120°.若APBP4,则PC的最小值为(

A. 2B. C. D. 3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图所示.在△ABC中,∠B=90°,AB=5cmBC=7cm.点P从点A开始沿AB边向点B1cm/s的速度移动,点Q从点B开始沿BC边向点C2cm/s的速度移动.如果PQ分别从AB同时出发,那么几秒后,△PBQ的面积等于4cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,BC=10cm、DC=6cm,点E、F分别为边AB、BC上的两个动点,E从点A出发以每秒5cm的速度向B运动,F从点B出发以每秒3cm的速度向C运动,设运动时间为t秒.若∠AFD=AED,则t的值为(  )

A. B. 0.5C. D. 1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠ACB90°,AC8BC6CDAB于点D.点P从点D出发,沿线段DC向点C运动,点Q从点C出发,沿线段CA向点A运动,两点同时出发,速度都为每秒1个单位长度,当点P运动到C时,两点都停止.设运动时间为t秒.

1)求线段CD的长;

2)当t为何值时,△CPQ与△ABC相似?

3)是否存在某一时刻,使得PQ分△ACD的面积为23?若存在,求出t的值,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知Rt△AOB的两条直角边0A08分别在y轴和x轴上,并且OAOB的长分别是方程x2—7x+12=0的两根(OA<0B),动点P从点A开始在线段AO上以每秒l个单位长度的速度向点O运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点PQ运动的时间为t秒.

(1)AB两点的坐标。

(2)求当t为何值时,△APQ△AOB相似,并直接写出此时点Q的坐标.

(3)t=2时,在坐标平面内,是否存在点M,使以APQM为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtACB中,ACB=90°,AC=BC,D是AB上的一个动点(不与点A,B重合),连接CD,将CD绕点C顺时针旋转90°得到CE,连接DE,DE与AC相交于点F,连接AE.下列结论:①△ACE≌△BCD;②BCD=25°,则∠AED=65°;③DE2=2CFCA;④若AB=3,AD=2BD,则AF=.其中正确的结论是______.(填写所有正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将△OAB绕点O逆时针旋转80°得到△OCD,点A与点C是对应点.

(1)画出△OAB关于点O对称的图形(保留画图痕迹,不写画法);

(2)若∠A=110°,∠D=40°,求∠AOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,分别是菱形ABCD的两条对角线长和边长,这时我们把关于的形如的一元二次方程称为菱系一元二次方程.请解决下列问题:

1)填空:时,

用含的代数式表示值,

2)求证:关于菱系一元二次方程必有实数根;

3)若菱系一元二次方程的一个根,且菱形的面积是25BE是菱形ABCDAD边上的高,求BE的值.

查看答案和解析>>

同步练习册答案