已知关于x的一元二次方程x2﹣2mx+m2﹣m=o有两个实数根a、b;
(1)求实数m的取值范围;
(2)求代数式a2+b2﹣3ab的最大值.
【考点】根的判别式;根与系数的关系;配方法的应用.
【分析】(1)根据判别式的意义得到△=(﹣2m)2﹣4(m2﹣m)≥0,然后解不等式即可;
(2)由根与系数的关系得出a+b=2m,ab=m2﹣m,将代数式a2+b2﹣3ab变形为(a+b)2﹣5ab=﹣m2+5m=﹣(m﹣
)2+
,即可求出最大值.
【解答】解:(1)根据题意得△=(﹣2m)2﹣4(m2﹣m)≥0,
解得m≥0;
(2)∵关于x的一元二次方程x2﹣2mx+m2﹣m=0有两个实数根a、b,
∴a+b=2m,ab=m2﹣m,
∴a2+b2﹣3ab=(a+b)2﹣5ab
=(2m)2﹣5(m2﹣m)
=﹣m2+5m
=﹣(m﹣
)2+
,
由(1)得m≥0,
∴代数式a2+b2﹣3ab的最大值为
.
【点评】本题考查了一元二次方程根的判别式,一元二次方程根的情况与判别式△的关系:
(1)△>0⇔方程有两个不相等的实数根;
(2)△=0⇔方程有两个相等的实数根;
(3)△<0⇔方程没有实数根.
也考查了根与系数关系,配方法的应用.
科目:初中数学 来源: 题型:
已知二次函数y=a(x﹣m)2+n的图象经过(0,5)、(10,8)两点.若a<0,0<m<10,则m的值可能是( )
A.2 B.8 C.3 D.5
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在Rt△ACB中,∠C=90°,AC=30cm,BC=25cm,动点P从点C出发,沿CA方向运动,速度是2cm/s,动点Q从点B出发,沿BC方向运动,速度是1cm/s.
(1)几秒后P、Q两点相距25cm?
(2)几秒后△PCQ与△ABC相似?
(3)设△CPQ的面积为S1,△ABC的面积为S2,在运动过程中是否存在某一时刻t,使得S1:S2=2:5?若存在,求出t的值;若不存在,则说明理由.
![]()
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,观测点A、旗杆DE的底端D、某楼房CB的底端C三点在一条直线上,从点A处测得楼顶端B的仰角为22°,此时点E恰好在AB上,从点D处测得楼顶端B的仰角为38.5°.已知旗杆DE的高度为12米,试求楼房CB的高度.(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5°≈0.62,cos38.5°≈0.78,tan38.5°≈0.80)
![]()
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com