精英家教网 > 初中数学 > 题目详情

【题目】如图,矩形ABCD中,延长AB至E,延长CD至F,BE=DF,连接EF,与BC、AD分别相交于P、Q两点.

(1)求证:CP=AQ;

(2)若BP=1,PQ=AEF=45°,求矩形ABCD的面积.

【答案】(1)证明见解析;(2)8

【解析】

试题分析:(1)由矩形的性质得出A=ABC=C=ADC=90°,AB=CD,AD=BC,ABCD,ADBC,证出E=F,AE=CF,由ASA证明CFP≌△AEQ,即可得出结论;

(2)证明BEP、AEQ是等腰直角三角形,得出BE=BP=1,AQ=AE,求出PE=BP=,得出EQ=PE+PQ=,由等腰直角三角形的性质和勾股定理得出AQ=AE=3,求出AB=AE﹣BE=2,DQ=BP=1,得出AD=AQ+DQ=4,即可求出矩形ABCD的面积.

试题解析:(1)证明:四边形ABCD是矩形,∴∠A=ABC=C=ADC=90°,AB=CD,AD=BC,ABCD,ADBC,∴∠E=F,BE=DF,AE=CF,在CFP和AEQ中,∵∠C=A,CF=AE,F=E∴△CFP≌△AEQ(ASA),CP=AQ;

(2)解:ADBC,∴∠PBE=A=90°,∵∠AEF=45°,∴△BEP、AEQ是等腰直角三角形,BE=BP=1,AQ=AE,PE=BP=EQ=PE+PQ==AQ=AE=3,AB=AE﹣BE=2,CP=AQ,AD=BC,DQ=BP=1,AD=AQ+DQ=3+1=4,矩形ABCD的面积=ABAD=2×4=8.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】先化简,再求值:﹣(﹣a2+2ab+b2)+(﹣a2﹣ab+b2),其中a=﹣ ,b=10.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A、O、E在同一直线上,∠AOB=40°,∠COD=28°,OD平分∠COE.

(1)求∠COB的度数;
(2)求∠AOD的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下列语句:

①对顶角不相等;②今天天气很热!;③同位角相等;④画∠AOB的平分线OC;⑤这个角等于30°吗?在这些语句是,属于命题的是_______(填写序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC中∠C=90°,线段AD是△ABC的角平分线,直线DE是线段AB的垂直平分线.若DE=1cm,DB=2cm,AC= cm.求点C到直线AD的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】平行四边形ABCD中一条对角线分∠A为35°和45°,则∠B=______________度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某公园元旦期间,前往参观的人非常多.这期间某一天某一时段,随机调查了部分入园游客,统计了他们进园前等候检票的时间,并绘制成如下图表.表中“10~20”表示等候检票的时间大于或等于10min而小于20min,其它类同.

(1)这里采用的调查方式是(填“普查”或“抽样调查”),样本容量是
(2)表中a= , b= , 并请补全频数分布直方图;
(3)在调查人数里,若将时间分段内的人数绘成扇形统计图,则“40~50”的圆心角的度数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,分别以点A和点B为圆心,大于 AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为(
A.7
B.14
C.17
D.20

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】九(1)班同学为了解2011年某小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据进行如下整理.请解答以下问题:
(1)把下面的频数分布表和频数分布直方图补充完整;

月均用水量x(t)

频数(户)

频率

0<x≤5

6

0.12

5<x≤10

0.24

10<x≤15

16

0.32

15<x≤20

10

0.20

20<x≤25

4

25<x≤30

2

0.04



(2)求该小区用水量不超过15t的家庭占被调查家庭总数的百分比;
(3)若该小区有1000户家庭,根据调查数据估计,该小区月均用水量超过20t的家庭大约有多少户?

查看答案和解析>>

同步练习册答案