在平面直角坐标系xOy中,如图,已知Rt△DOE,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5.∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求画图(保留作图痕迹):
(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E的对应点为点N),画出△OMN;
(2)将△ABC沿x轴向右平移得到△A′B′C′(其中点A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中的△OMN的边NM重合;
(3)求OE的长.
![]()
(1)作图见解析;(2)作图见解析;(3)6.
【解析】
试题分析:(1)以点O为圆心,以OE为半径画弧,与y轴正半轴相交于点M,以OD为半径画弧,与x轴负半轴相交于点N,连接MN即可.
(2)以M为圆心,以AC长为半径画弧与x轴负半轴相交于点A′,B′与N重合,C′与M重合,然后顺次连接即可.
(3)设OE=x,则ON=x,作MF⊥A′B′于点F,判断出B′C′平分∠A′B′O,再根据角平分线上的点到角的两边距离相等和角平分线的对称性可得B′F=B′O=OE=x,F C′=O C′=OD=3,利用勾股定理列式求出A′F,然后表示出A′B′、A′O,在Rt△A′B′O中,利用勾股定理列出方程求解即可.
试题解析:【解析】
(1)△OMN如图所示.
(2)△A′B′C′如图所示.
![]()
(3)设OE=x,则ON=x,如答图,过点M作MF⊥A′B′于点F,
由作图可知:B′C′平分∠A′B′O,且C′O⊥O B′,
∴B′F=B′O=OE=x,F C′=O C′=OD=3,
∵A′C′=AC=5,∴
.∴A′B′=x+4,A′O=5+3=8.
在Rt△A′B′O中,
,解得x=6.
∴OE=6.
![]()
考点:1.作图(旋转和平移变换);2.旋转和平移变换的性质;3.勾股定理;4.方程思想的应用.
科目:初中数学 来源:2014年初中毕业升学考试(江苏淮安卷)数学(解析版) 题型:选择题
如图,圆锥的母线长为2,底面圆的周长为3,则该圆锥的侧面积为( )
![]()
A.3π B.3 C.6π D.6
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(江苏徐州卷)数学(解析版) 题型:解答题
如图,轮船从点A处出发,先航行至位于点A的南偏西15°且点A相距100km的点B处,再航行至位于点A的南偏东75°且与点B相距200km的点C处.
(1)求点C与点A的距离(精确到1km);
(2)确定点C相对于点A的方向.
(参考数据:
)
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(江苏徐州卷)数学(解析版) 题型:选择题
点A、B、C在同一条数轴上,其中点A、B表示的数分别为﹣3、1,若BC=2,则AC等于( )
A.3 B.2 C.3或5 D.2或6
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(江苏常州卷)数学(解析版) 题型:填空题
已知扇形的半径为3
,此扇形的弧长是![]()
,则此扇形的圆心角等于 度,扇形的面积是 .(结果保留
)
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(江苏宿迁卷)数学(解析版) 题型:解答题
如图,AB是⊙O的弦,OP⊥OA交AB于点P,过点B的直线交OP的延长线于点C,且CP=CB.
(1)求证:BC是⊙O的切线;
(2)若⊙O的半径为
,OP=1,求BC的长.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com