精英家教网 > 初中数学 > 题目详情
5.已知正比例函数y=(2-k)x的图象经过第二、四象限,求函数y=-kx的图象经过哪些象限?

分析 根据正比例函数的性质:当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小,可得答案.

解答 解:由正比例函数y=(2-k)x的图象经过第二、四象限,得
2-k<0.
解得k>2.
两边都乘以-1,得
-k<-2.
由-k<-2,得
函数y=-kx的图象经过二四象限.

点评 本题考查了正比例函数的性质,它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

15.先阅读下面的例题,再完成作业.
例题.解不等式(3x-2)(2x+1)>0.
解:由有理数的乘法法则可知“两数相乘,同号得正”.因此可得①$\left\{\begin{array}{l}{3x-2>0}\\{2x+1>0}\end{array}\right.$ 或②$\left\{\begin{array}{l}{3x-2<0}\\{2x+1<0}\end{array}\right.$,解不等式组①得x>$\frac{2}{3}$,解不等式组②得x<-$\frac{1}{2}$,所以不等式(3x-2)(2x+1)>0的解集是x<-$\frac{1}{2}$或x>$\frac{2}{3}$.
(1)求不等式$\frac{x+2}{3x+5}$<0的解集;
(2)例题和(1)的解法过程体现了数学中的什么思想?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.△ABC中,∠A:∠B:∠C=2:3:4,则∠A的度数为(  )
A.35°B.40°C.70°D.110°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在平面直角坐标系中,直线$y=x+\frac{k}{2}$与双曲线$y=\frac{k}{x}$在第一象限交于点A,与x轴交于点C,AB⊥x轴,垂足为B,此时点B(1,0).求:
(1)求两个函数解析式;
(2)求△AOC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.计算:3$\sqrt{5}$-($\sqrt{5}$-$\sqrt{6}$)-$\sqrt{6}$=2$\sqrt{5}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图1,已知△ABC为等边三角形,D、E、F分别在边BC、CA、AB上,且△DEF也是等边三角形.
(1)求证:AF=BD;
(2)若△ABC的边长为2,求△DEF面积的最小值;
(3)如图2,若△ABC和△FDE都改成等腰三角形,且顶角∠BAC=∠DFE,D是BC的中点,求证:DF∥AC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,已知△ABC中,∠C=90°,将△ACB绕点A顺时针旋转一个角度得△ADE,连接BE、CD,延长CD交BE于点F,求证:BF=EF.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列由5个结论:①abc<0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1).其中正确的结论有①③④⑤.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.有一条公路连接A、B两地,一个骑行俱乐部上午9点从A地出发到达B地后返回,图中折线表示骑车人离A地的距离与时间的函数关系.有一辆客车9时从B地出发,以60千米/小时的速度为匀速行驶,图中的粗线表示客车离A地的距离与时间的函数关系.
(1)A、B两地相距60千米,骑车人最快速度是45千米/小时;
(2)设骑车人离A地的距离为y1,客车离A地的距离为y2,时间为x,分别求出9点到10点之间二者的函数关系式;
(3)若客车到达A地后立即返回B地(乘客上下车停留时间忽略不计),在原图上画出客车返程中离A地的距离与时间的函数图象,求出函数关系式,并求出客车与骑车人第二次相遇的时间.
(4)若客车以原速度往返于两地(乘客上下车停留时间忽略不计),客车和骑车人还会相遇几次?直接写出相遇的时间.

查看答案和解析>>

同步练习册答案