【题目】如图(1),直线AB∥CD,点P在两平行线之间,点E在AB上,点F在CD上,连结PE,PF.
(1)∠PEB,∠PFD,∠EPF满足的数量关系是 ,并说明理由.
(2)如图(2),若点P在直线AB上侧时,∠PEB,∠PFD,∠EPF满足的数量关系是 (不需说明理由)
(3)如图(3),在图(1)基础上,PE平分∠PEB,PF平分∠PFD,若设∠PEB=x°,∠PFD=y°.则∠P=______(用x,y的代数式表示),若PE平分∠PEB,PF平分∠PFD,可得∠P,PE平分∠PEB,PF平分∠PFD,可得∠P…,依次平分下去,则∠P=______.
(4)科技活动课上,雨轩同学制作了一个图(5)的“飞旋镖”,经测量发现∠PAC=28°,
∠PBC=30°,他很想知道∠APB与∠ACB的数量关系,你能告诉他吗?说明理由.
【答案】(1)∠PEB,∠PFD,∠P满足的数量关系是∠P=∠PEB+∠PFD,理由见解析;
(2)∠PFD=∠PEB+∠P
(3)∠P1= ,∠Pn=
(4)∠APB=∠C+58°
【解析】试题分析:(1)过点P作PH∥AB∥CD,根据平行线的性质:两直线平行,内错角相等即可证得;
(2)若点P在直线AB上时,过P作AB的平行线,同理依据两直线平行,内错角相等即可证得;
(3)利用(1)的结论和角平分线的性质即可写出结论;
(4)过A、B分别作直线AE、BF,使AE∥BF,利用(1)的结论即可求解.
试题解析:(1)∠PEB,∠PFD,∠P满足的数量关系是∠P=∠PEB+∠PFD
理由如下:过点P作PH∥AB∥CD
∴∠PEB=∠EPH,∠PFD=∠FPH
而∠EPF=∠EPH+∠FPH
∴∠EPF=∠PEB+∠PFD
(2)如图(2),若点P在直线AB上时,
∠PEB,∠PFD,∠P满足的数量关系是∠PFD=∠PEB+∠P
(不需说明理由)
(3)∠P1= (x+y)°(用x,y的代数式表示)
∠Pn=()n(x+y)°.
(4)∠APB=∠C+58.理由如下:
过A.B分别作直线AE、BF,使AE∥BF.
如图,由(1)规律可知∠C=∠1+∠2.
∠APB=∠PAE+∠PBF=(∠PAC+∠1)+(∠PBC+∠2)=∠PAC+∠PBC+(∠1+∠2)=∠C+58°
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,CD是AB边上的中线,已知∠B=45,tan∠ACB=3,AC=,
求:(1)△ABC的面积;(2)sin∠ACD的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,若直线y=kx+b经过第一、三、四象限,则直线y=bx-k不经过的象限是( )
A.第一象限B.第二象限C.第三象限D.第四象限
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道一次函数与的图象关于轴对称,所以我们定义:函数与互为“镜子”函数.
()请直接写出函数的“镜子”函数__________.
()如果一对“镜子”函数与的图象交于点,且与轴交于、两点,如图所示,若,且的面积是,求这对“镜子”函数的解析式.
()若点是轴上的一个动点,当为等腰三角形时,直接写出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校的20年校庆举办了四个项目的比赛,现分别以A,B,C,D表示它们.要求每位同学必须参加且限报一项.以701班为样本进行统计,并将统计结果绘制如下两幅统计图,其中参加A项目的人数比参加C与D项目人数的总和多1人,参加D项目的人数比参加A项目的人数少11人.请你结合图中所给出的信息解答下列问题:
(1)求出全班总人数;
(2)求出扇形统计图中参加D项目比赛的学生所在的扇形圆心角的度数;
(3)若该校7年级学生共有200人,请你估计这次活动中参加A和B项目的学生共有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“长度分别为6cm、8cm、10cm的三根木条首尾顺次相接,组成一个直角三角形.”这个事件是( )
A. 必然事件 B. 不可能事件 C. 随机事件 D. 无法确定
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某摩托车厂本周内计划每日生产300辆摩托车,由于工人实行轮休,每日上班人数不一定相等,实际每日生产量与计划量相比情况如下表(增加的车辆数为正数,减少的车辆数为负数)
(1)本周三生产了摩托车 辆;
(2)本周总生产量与计划生产量相比,是增加还是减少?
(3)产量最多的一天比产量最少的一天多生产了多少辆?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com