精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,四边形ABOC是正方形,点A的坐标为(1,1),是以点B为圆心,BA为半径的圆弧;是以点O为圆心,OA1为半径的圆弧,是以点C为圆心,CA2为半径的圆弧,是以点A为圆心,AA3为半径的圆弧,继续以点B,O,C,A为圆心按上述作法得到的曲线AA1A2A3A4A5称为正方形的渐开线,则点A2 018的坐标是________

【答案】(0,-2 018)

【解析】

根据画弧的方法以及罗列部分点的坐标发现:点Ax的坐标满足“A4n=(1,4n+1),A4n+1=(4n+2,0),A4n+2=(0,-(4n+2)),A4n+3=(-(4n+3),1)”,根据这一规律即可得出A2018点的坐标.

解:观察,找规律:A(1,1),A1(2,0),A2(0,-2),A3(-3,1),A4(1,5),A5(6,0),A6(0,-6),A7(-7,1),A8(1,9)…,

A4n=(1,4n+1),A4n+1=(4n+2,0),A4n+2=(0,-(4n+2)),A4n+3=(-(4n+3),1).

5=4+1,2018=504×4+2,

A2018的坐标为(0,-2018).

故答案为:(0,-2018).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图所示,在矩形ABCD中,AC、BD相交于点O,OEBCE,连接DEOC于点F,作FGBCG.

(1)说明点G是线段BC的一个三等分点;

(2)请你依照上面的画法,在原图上画出BC的一个四等分点(保留作图痕迹,不必证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正△ABC的边长为3cm,动点P从点A出发,以每秒1cm的速度,沿的方向运动,到达点C时停止,设运动时间为x(秒),,y关于x的函数的图像大致为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,AC是⊙O的切线,BC与⊙O相交于点D,点E在⊙O上,且DE=DA,AEBC相交于点F.

(1)求证:FD=DC;

(2)AE=8,DE=5,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在边长为6的菱形ABCD中,动点M从点A出发,沿A→B→C向终点C运动,连接DMAC于点N

1)如图1,当点MAB边上时,连接BN

试说明:

∠ABC=60°AM=4,求点MAD的距离.

2)如图2,若∠ABC=90°,记点M运动所经过的路程为x6≤x≤12).试问:x为何值时,△ADN为等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.

(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?

(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.

①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?

②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接于⊙OAC⊙O的直径,PB⊙O的切线,B为切点,OP⊥BC,垂足为E,交⊙OD,连接BD

1)求证:BD平分∠PBC

2)若⊙O的半径为1PD=3DE,求OEAB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连结BD、DP,BD与CF相交于点H.给出下列结论:

BDE∽△DPE;②=;③DP2=PHPB;④tanDBE=2

其中正确的是( )

A.①②③④ B.①②④ C.②③④ D.①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将进货单价40元的商品按50元出售,能卖出500个,已知这种商品每涨价1元,就会少销售10个。为了赚得8000元的利润,售价应定为多少?这时应进货多少个

查看答案和解析>>

同步练习册答案