【题目】二次函数(,,为常数且)中的与的部分对应值如下表:
-1 | 0 | 1 | 3 | |
-1 | 3 | 5 | 3 |
给出了结论:
(1)二次函数有最大值,最大值为5;(2);(3)时,的值随值的增大而减小;(4)3是方程的一个根;(5)当时,.则其中正确结论的个数是( )
A.4B.3C.2D.1
科目:初中数学 来源: 题型:
【题目】如图,菱形OABC的顶点O在坐标原点,顶点A在x轴上,∠B=120°,OA=2,将菱形OABC绕原点顺时针旋转105°至OA′B′C′的位置,则点B′的坐标为( )
A. (,) B. (,) C. (2,-2) D. (,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A (8,0) ,B (0,6),动点M从点A出发沿AO以每秒2个单位长度的速度向原点O运动,同时动点N从点B出发沿折线BO﹣OA向终点A运动,点N在y轴上的速度是每秒3个单位长度,在x轴上的速度是每秒4个单位长度,过点M作x轴的垂线交AB于点C,连结MN、CN.设点M运动的时间为t(秒),△MCN的面积为S(平方单位).
(1)当t为何值时,点M、N相遇?
(2)求△MCN的面积S(平方单位)与时间t(秒)的函数关系式;
(3)当t为何值时,△MCN是等腰三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.
求出每天的销售利润元与销售单价元之间的函数关系式;
求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?
如果该企业要使每天的销售利润不低于4000元,且每天的总成本不超过7000元,那么销售单价应控制在什么范围内?每天的总成本每件的成本每天的销售量
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某政府在广场上树立了如图所示的宣传牌,数学兴趣小组的同学想利用所学的知识测量宣传牌的高度AB,在D处测得点A、B的仰角分别为38°、21°,已知CD=20m,点A、B、C在一条直线上,AC⊥DC,求宣传牌的高度AB(sin21°≈0.36,cos21°≈0.93,tan21°≈0.38,sin38°≈0.62,cos38°≈0.78,tan38°≈0.79,结果精确到1米)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形ABCD的四个顶点都在⊙O上,E是⊙O上的一点.
(1)如图①,若点E在上,F是DE上的一点,DF=BE.求证:△ADF≌△ABE;
(2)在(1)的条件下,小明还发现线段DE、BE、AE之间满足等量关系:DE﹣BE=AE.请你说明理由;
(3)如图②,若点E在上.写出线段DE、BE、AE之间的等量关系.(不必证明)
第26题
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长(单位:cm)在5~50之间,每张薄板的成本价y1(单位:元)与它的边长x(单位:cm)满足关系式y1=,每张薄板的出厂价y2(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长x成正比例,在营销过程中得到了表格中的数据.
薄板的边长(cm) | 20 | 30 |
出厂价(元/张) | 50 | 70 |
(1)求一张薄板的出厂价y2与边长x之间满足的函数关系式;
(2)已知:利润=出厂价﹣成本价
①求一张薄板的利润y与边长x之间满足的函数关系式;
②当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将△ABC绕顶点C逆时针旋转得到△A′B′C,且点B刚好落在A′B′上.若∠A=25°,∠BCA′=45°,则∠A′BA=___________度
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图点O是等边内一点,,∠ACD=∠BCO,OC=CD,
(1)试说明:是等边三角形;
(2)当时,试判断的形状,并说明理由;
(3)当为多少度时,是等腰三角形
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com