【题目】某工厂生产一种合金薄板(其厚度忽略不计),这些薄板的形状均为正方形,边长(单位:cm)在5~50之间,每张薄板的成本价y1(单位:元)与它的边长x(单位:cm)满足关系式y1=,每张薄板的出厂价y2(单位:元)由基础价和浮动价两部分组成,其中基础价与薄板的大小无关,是固定不变的,浮动价与薄板的边长x成正比例,在营销过程中得到了表格中的数据.
薄板的边长(cm) | 20 | 30 |
出厂价(元/张) | 50 | 70 |
(1)求一张薄板的出厂价y2与边长x之间满足的函数关系式;
(2)已知:利润=出厂价﹣成本价
①求一张薄板的利润y与边长x之间满足的函数关系式;
②当边长为多少时,出厂一张薄板获得的利润最大?最大利润是多少?
【答案】(1)y2=2x+10;(2)①一张薄板的利润y与边长x之间满足的函数关系式为y=﹣+2x+10;②当边长为25cm时,出厂一张薄板利润最大,最大利润为35元.
【解析】
(1)利用待定系数法求一次函数解析式即可;
(2)①y=y2-y1,将y2和y1的表达式代入,即可求出利润y与边长x之间满足的函数关系式;②将①中的二次函数的一般式改写成顶点式,根据二次函数的性质可得答案.
(1)根据题意,出厂价y2与边长x之间满足一次函数关系式,设y2=kx+b
由表中数据可得:
解得:
∴y2=2x+10;
(2)①由题意得,y=y2﹣y1
=(2x+10)﹣
=﹣+2x+10
∴一张薄板的利润y与边长x之间满足的函数关系式为y=﹣+2x+10;
②y=﹣+2x+10
=
∵
∴当x=25时,y最大值=35
又∵x=25时,满足5<x<50
∴当边长为25cm时,出厂一张薄板利润最大,最大利润为35元.
科目:初中数学 来源: 题型:
【题目】如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC 的三个顶点的坐标分别 A(-3,4)B(-5,2)C(-2,1)
(1)画出 △ABC关于y 轴的对称图形 △A1B1C1;
(2)画出将△ABC 绕原点 O逆时针方向旋转90°得到的△A2B2C2 ;
(3)求(2)中线段 OA扫过的图形面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题发现:如图1,在等边中,点为边上一动点,交于点,将绕点顺时针旋转得到,连接.则与的数量关系是_____,的度数为______.
(2)拓展探究:如图2,在中,,,点为边上一动点,交于点,当∠ADF=∠ACF=90°时,求的值.
(3)解决问题:如图3,在中,,点为的延长线上一点,过点作交的延长线于点,直接写出当时的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数(,,为常数且)中的与的部分对应值如下表:
-1 | 0 | 1 | 3 | |
-1 | 3 | 5 | 3 |
给出了结论:
(1)二次函数有最大值,最大值为5;(2);(3)时,的值随值的增大而减小;(4)3是方程的一个根;(5)当时,.则其中正确结论的个数是( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图为二次函数y=ax2+bx+c的图象,在下列说法中:①ac<0;②方程ax2+bx+c=0的根是x1,x2,则x1+x2<0;③a+b+c>0;④当x>1时,y随x的增大而增大.正确的说法有_____.(把正确的答案的序号都填在横线上)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DF⊥AC于点F,交BA的延长线于点E.求证:
(1)BD=CD;
(2)DE是⊙O的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:如调整价格,每涨价1元,每星期要少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元
(1)设每件涨价x元,则每星期实际可卖出 件,每星期售出商品的利润y为 元.x的取值范围是 ;
(2)设每件降价m元,则每星期售出商品的利润w为 元;
(3)在涨价的情况下,如何定价才能使每星期售出商品的利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司从2014年开始投入技术改进资金,经技术改进后,其产品的成本不断降低,具体数据如下表:
年 度 | 2013 | 2014 | 2015 | 2016 |
投入技改资金(万元) | 2.5 | 3 | 4 | 4.5 |
产品成本(万元/件) | 7.2 | 6 | 4.5 | 4 |
(1)请你认真分析表中数据,从一次函数和反比例函数中确定哪一个函数能表示其变化规律,给出理由,并求出其解析式;
(2)按照这种变化规律,若2017年已投入资金5万元.
①预计生产成本每件比2016年降低多少万元?
②若打算在2017年把每件产品成本降低到3.2万元,则还需要投入技改资金多少万元?(结果精确到0.01万元).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com