【题目】如图,四边形ABCD中,AB∥DC,∠ABC=90°,AB=4,CD=1,BC=4.在边BC上取一点P,使得以A、B、P为顶点的三角形与以C、D、P为顶点的三角形相似,甲认为这样的点P只存在1个,乙认为这样的点P存在不止1个,则( )
A.甲的说法正确B.乙的说法正确
C.甲、乙的说法都正确D.甲、乙的说法都不正确
科目:初中数学 来源: 题型:
【题目】如图,PB为⊙O的切线,B为切点,直线PO交⊙于点E、F,过点B作PO的垂线BA,垂足为点D,交⊙O于点A,延长AO与⊙O交于点C,连接BC,AF.
(1)求证:直线PA为⊙O的切线;
(2)试探究线段EF、OD、OP之间的等量关系,并加以证明;
(3)若BC=6,tan∠F=,求cos∠ACB的值和线段PE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,直线y=﹣x+2与x轴,y轴分别交于A,B两点,以A为顶点的抛物线经过点B,点P是抛物线上一点,连接OP,AP.
(1)求抛物线的解析式;
(2)若△AOP的面积是3,求P点坐标;
(3)如图②,动点M,N同时从点O出发,点M以1个单位长度/秒的速度沿x轴正半轴方向匀速运动,点N以个单位长度/秒的速度沿y轴正半轴方向匀速运动,当其中一个动点停止运动时,另一个动点也随之停止运动,过点N作NE∥x轴交直线AB于点E.若设运动时间为t秒,是否存在某一时刻,使四边形AMNE是菱形?若存在,求出t的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1是一种手机自拍杆,杆体从上至下分别由手机夹架、多节套管和可升降支架脚连接而成.使用时通过自由伸缩套管调节自拍杆的长度,同时可以通过调节支架脚使拍摄时更灵活安全.图2是其正面简化示意图,手机(为矩形)与其下方套管连接于点E,E为的中点,,支架脚,与地面平行,.
(1)当时,求点E到地面的高度;
(2)若在某环境中拍摄时,调节支架脚使,若,求点G到直线与交点的距离.
(参考数据:,结果精确到)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上(不与点A,O重合)的一个动点,过点P作PE⊥PB且PE交边CD于点E.
(1)求证:PE=PB;
(2)如图2,若正方形ABCD的边长为2,过点E作EF⊥AC于点F,在点P运动的过程中,PF的长度是否发生变化?若不变,试求出这个不变的值;若变化,请说明理由;
(3)用等式表示线段PC,PA,CE之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,∠C=90°,点D在AC上,且CD>DA,DA=2.点P、Q同时从D点出发,以相同的速度分别沿射线DC、射线DA运动.过点Q作AC的垂线段QR,使QR=PQ,联接PR.当点Q到达A时,点P、Q同时停止运动.设PQ=x.△PQR和△ABC重合部分的面积为S.S关于x的函数图像如图2所示(其中0<x≤,<x≤m时,函数的解析式不同)
(1)填空:n的值为___________;
(2)求S关于x的函数关系式,并写出x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y=(x>0)的图象上有一点A,连结OA,将线段AO绕点A逆时针旋转60°得到线段AB.若点A的横坐标为t,点B的纵坐标为s,则s关于t的函数解析式为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线与x轴、y轴分别交于点B、C,抛物线经过点B、C,并与x轴交于另一点A.
(1)求此抛物线及直线AC的函数表达式;
(2)垂直于y轴的直线l与抛物线交于点P(,),Q(,),与直线BC交于点,N(,),若<<,结合函数的图象,求的取值范围;
(3)经过点D(0,1)的直线m与射线AC、射线OB分别交于点M、N.当直线m绕点D旋转时, 是否为定值,若是,求出这个值,若不是,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com