| A. | 6π-4 | B. | 6π-8 | C. | 8π-4 | D. | 8π-8 |
分析 先根据勾股定理求出AC的长,再由正方形的性质得出∠ACD=45°,根据S阴影=S扇形ACE-S△ACD即可得出结论.
解答 解:∵在正方形ABCD中,AB=2$\sqrt{2}$,
∴AC=$\sqrt{(2\sqrt{2})^{2}+(2\sqrt{2})^{2}}$=4,∠ACD=45°.
∵点E在BC的延长线上,
∴∠DCE=90°,
∴∠ACE=45°+90°=135°,
∴S阴影=S扇形ACE-S△ACD=$\frac{135π×{4}^{2}}{360}$-$\frac{1}{2}$×2$\sqrt{2}$×2$\sqrt{2}$=6π-4.
故选A.
点评 本题考查的是扇形面积的计算,熟记扇形的面积公式及正方形的性质是解答此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 60° | B. | 67.5° | C. | 75° | D. | 85° |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com