| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 由在?ABCD中,O为AC的中点,易证得四边形AFCE是平行四边形;然后由一组邻边相等的平行四边形是菱形与对角线互相垂直的平行四边形是菱形,求得答案.
解答 解:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠AEO=∠CFO,
∵O为AC的中点,
∴OA=OC,
在△AOE和△COF中,
$\left\{\begin{array}{l}{∠AEO=∠CFO}\\{∠AOE=∠COF}\\{OA=OC}\end{array}\right.$,
∴△AOE≌△COF(AAS),
∴OE=OF,
∴四边形AFCE是平行四边形;
①∵OE=OA,
∴AC=EF,
∴四边形AFCE是矩形;故错误;
②∵EF⊥AC,
∴四边形AFCE是菱形;故正确;
③∵AF平分∠BAC,AB⊥AC,
∴∠BAF=∠CAF=45°,
无法判定四边形AFCE是菱形;故错误;
④∵AC⊥AB,AB∥CD,
∴AC⊥CD,
∵E为AD中点,
∴AE=CE=$\frac{1}{2}$AD,
∴四边形AFCE是菱形;故正确.
故选B.
点评 此题考查了菱形的判定、平行四边形的判定与性质以及全等三角形的判定与性质.注意首先证得四边形AFCE是平行四边形是关键.
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (x-2)2=1 | B. | (x-2)2=9 | C. | (x-4)2=21 | D. | (x-4)2=11 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 5-(-8)=-3 | B. | 6$\sqrt{5}$×$2\sqrt{5}$=12$\sqrt{5}$ | C. | $\frac{1}{4}$×(-4)=1 | D. | $\sqrt{\frac{1}{3}}$$÷\sqrt{\frac{1}{8}}$=$\frac{2\sqrt{6}}{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1500πcm2 | B. | 2000πcm2 | C. | 1200πcm2 | D. | 1600πcm2 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com