精英家教网 > 初中数学 > 题目详情

【题目】一个直立的火柴盒在桌面上倒下,启迪人们发现了勾股定理的一种新的证明方法.如图2,火柴盒的一个侧面ABCD倒下到AEFG的位置,连结CF,AB=a,BC=b,AC=c.

(1)请你结合图1用文字和符号语言分别叙述勾股定理;
(2)请利用直角梯形BCFG的面积证明勾股定理: .

【答案】
(1)解:勾股定理:直角三角形的两条直角边的平方和等于斜边的平方,

即:


(2)解:

.

整理,得


【解析】(1)直接写出勾股定理:直角三角形的两条直角边的平方和等于斜边的平方;(2)由RtΔABC≌RtΔFGA ,得到对应角相等,得到∠FAC=90°,根据梯形的面积S梯形BCFG=SRtΔABC+SRtΔACF+SRtΔAFG ;得到a2+b2=c2 .

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若一个多边形的内角和为其外角和的6,则这个多边形的边数为______.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知等腰三角形的一边是 4,周长是 18,则它的腰长为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,飞机在一定高度上沿水平直线飞行,先在点处测得正前方小岛的俯角为,面向小岛方向继续飞行到达处,发现小岛在其正后方,此时测得小岛的俯角为.如果小岛高度忽略不计,求飞机飞行的高度(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一个函数,当 时,函数值 随着 的增大而减小,请写出这个函数关系式(写出一个即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.(友情提醒:正方形的四条边都相等,即AB=BC=CD=DA;四个内角都是90°,即∠A=∠B=∠C=∠D=90°)

(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;
(3)设AP为x,求出BE的长.(用含x的代数式表式)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,RtABC的斜边AB在y轴上,边AC与x轴交于点D,AE平分BAC交边BC于点E,经过点A、D、E的圆的圆心F恰好在y轴上,F与y轴相交于另一点G.

(1)求证:BC是F的切线;

(2)若点A、D的坐标分别为A(0,﹣1),D(2,0),求F的半径;

(3)试探究线段AG、AD、CD三者之间满足的等量关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】多项式x2+mx+25能用完全平方公式分解因式,则m=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】夏季空调销售供不应求,某空调厂接到一份紧急订单,要求在10天内(含10天)完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了空调42台,以后每天生产的空调都比前一天多2台,由于机器损耗等原因,当日生产的空调数量达到50台后,每多生产一台,当天生产的所有空调,平均每台成本就增加20元.

(1)设第天生产空调台,直接写出之间的函数解析式,并写出自变量的取值范围.

(2)若每台空调的成本价(日生产量不超过50台时)为2000元,订购价格为每台2920元,设第天的利润为元,试求之间的函数解析式,并求工厂哪一天获得的利润最大,最大利润是多少.

查看答案和解析>>

同步练习册答案