精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC、△ADE中,C、D两点分别在AE、AB上,BC、DE交于点F,若BD=DC=CE,∠ADC+∠ACD=114°,则∠DFC为( )

A.114°
B.123°
C.132°
D.147°

【答案】B
【解析】∵BD=CD=CE,等腰三角形的性质得出∠B=∠DCB,∠E=∠CDE,

∵∠ADC+∠ACD=114°,

∴∠BDC+∠ECD=360°﹣114°=246°,

∴∠B+∠DCB+∠E+∠CDE=360°﹣246°=114°,

∴∠DCB+∠CDE=57°,

∴∠DFC=180°﹣57°=123°,

所以答案是:B.


【考点精析】利用等腰三角形的性质对题目进行判断即可得到答案,需要熟知等腰三角形的两个底角相等(简称:等边对等角).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】图象中所反应的过程是:张强从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x表示时间,y表示张强离家的距离,根据图象提供的信息,以下四个说法错误的是(  )

A. 体育场离张强家2.5千米 B. 张强在体育场锻炼了15分钟

C. 体育场离早餐店4千米 D. 张强从早餐店回家的平均速度是千米/小时

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O中,点A为 中点,BD为直径,过A作AP∥BC交DB的延长线于点P.

(1)求证:PA是⊙O的切线;
(2)若 ,AB=6,求sin∠ABD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学课上,李老师出示了如下框中的题目.

小明与同桌小聪讨论后,进行了如下解答:

1)特殊情况,探索结论

当点EAB的中点时,如图1,确定线段AEDB的大小关系,请你直接写出结论:AE______DB(填“=”).

2)一般情况,证明结论:

如图2,过点EEFBC,交AC于点F.(请你继续完成对以上问题(1)中所填写结论的证明)

3)拓展结论,设计新题:

在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC 若△ABC的边长为1AE=2,则CD的长为_______(请直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,铁路上AB两点相距25kmCD为两村庄,DAABACBABB,已知DA15kmCB10km,现在要在铁路AB上建一个土特产品收购站E,使得CD两村到E站的距离相等,则E站应建在距A站多少千米处?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一电线杆AB的影子分别落在了地上和墙上.同一时刻,小明竖起1米高的直杆MN,量得其影长MF为0.5米,量得电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米.你能利用小明测量的数据算出电线杆AB的高吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知a、b、c满足|a﹣|++(c﹣42=0.

(1)求a、b、c的值;

(2)判断以a、b、c为边能否构成三角形?若能构成三角形,此三角形是什么形状?并求出三角形的面积;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中边AB的垂直平分线分别交BC,AB于点D,E,AE=3cm,ADC的周长为9cm,ABC的周长是(

A. 10cm B. 12cm C. 15cm D. 17cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若一次函数y=(m+1)x+m的图象过第一、三、四象限,则函数y=mx2﹣mx(
A.有最大值
B.有最大值﹣
C.有最小值
D.有最小值﹣

查看答案和解析>>

同步练习册答案