【题目】(1)探究:
问题:如图1,等边三角形ABC的边长为6,点O是∠ABC和∠ACB的角平分线交点,∠FOG=120°,绕点O任意旋转∠FOG,分别交△ABC的两边于D,E两点求四边形ODBE的面积.
讨论:
①甲:在∠FOG旋转过程中,当OF经过点B时,OG一定经过点C.
②乙:小明的分析有道理,这样,我们就可以利用“ASA”证出△ODB≌△OEC.
③丙:因为△ODB≌△OEC,所以只要算出△OBC的面积就得出了四边形ODBE的面积.
老师:同学们的思路很清晰,也很正确,在分析和解决问题时,我们经常会借用特例作辅助线来解决一般问题请你按照探究的思路,直接写出四边形ODBE的面积:________.
(2)应用:
①特例:如图2,∠FOG的顶点O在等边三角形ABC的边BC上,OB=2,OC=4,边OG⊥AC于点E,OF⊥AB于点D,求△BOD面积.
②探究:如图3,已知∠FOG=60°,顶点O在等边三角形ABC的边BC上,OB=2,OC=4,记△BOD的面积为x,△COE的面积为y,求xy的值.
【答案】探究:3;应用:①;②12.
【解析】
(1)(1)由“ASA”可证△DOB≌△EOC,可得S△DOB=S△EOC,可得S△OBC=四边形ODBE的面积,即可求解;
(2)①由直角三角形的性质可求OD,BD的长,即可求解;
②过点O作OM⊥AB于M,ON⊥AC于N,可求OM=,ON=2,通过证明△BDO∽△COE,可得=,可得BDEC=OBOC=8,即可求解;
解:(1)方法引导:
如图1,连接OB,OC,
∵△ABC是等边三角形,
∴∠ABC=∠ACB=60°,
∵点O是∠ABC和∠ACB的角平分线交点,
∴∠ABO=∠OBC=∠OCB=30°,
∴OB=OC,∠BOC=∠FOG=120°,
∴∠DOB=∠COE,且OB=OC,∠ABO=∠BCO,
∴△DOB≌△EOC(ASA)
∴S△DOB=S△EOC,
∴S△OBC=四边形ODBE的面积,
∵等边三角形ABC的边长为6,
∴S△ABC=×62=9,
∴S△OBC=四边形ODBE的面积=S△ABC=3,
故答案为:3;
(2)①∵△ABC是等边三角形,∠B=60°,
∵OF⊥AB,
∴∠BOD=30°,
∵OB=2,
∴BD=1,
∴OD=,
∴△BOD的面积=×1×=;
②过点O作OM⊥AB于M,ON⊥AC于N,
由①得:OM=,同理:ON=2,
∵△ABC是等边三角形,
∴∠B=∠C=60°,
∵∠DOC=∠B+∠BDO=∠DOG+∠COG,且∠FOG=60°,
∴∠COG=∠BDO,且∠B=∠C=60°,
∴△BDO∽△COE,
∴=,
∴BDEC=OBOC=8,
∴xy=×BD×××CE×2=12;
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,C、G是⊙O上两点,且,过点C的直线CDBG于点D,交BA的延长线于点E,连接BC,交OD于点F.
(1)求证:CD是⊙O的切线.
(2)若,求E的度数.
(3)连接AD,在(2)的条件下,若CD=,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在直角坐标系中,(为坐标原点,点,点是中点,连接(将绕点顺时针旋转,得到,记旋转角为,点的对应点分别是,连接是中点,连接.
(1)如图①,当时,求点的坐标;
(2)如图②,当时,求证,且;
(3)当旋转至点共线时,求点的坐标(直接写出结果即可) .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的方程(2m+1)x2+4mx+2m﹣3=0有两个不相等的实数根.
(1)求m的取值范围;
(2)是否存在实数m,使方程的两个实数根的倒数之和等于﹣1?若存在,求出m的值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2,以此类推,得到的矩形A2020OC2020B2020的对角线交点的纵坐标为______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB为⊙O的直径,点C在⊙O外,∠ABC的平分线与⊙O交于点D,∠C=90°.
(1)求证:CD是⊙O的切线;
(2)若∠CDB=60°,AB=18,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为改善办学条件,计划采购A、B两种型号的空调,已知采购3台A型空调和2台B型空调,需费用39000元;4台A型空调比5台B型空调的费用多6000元.
(1)求A型空调和B型空调每台各需多少元;
(2)若学校计划采购A、B两种型号空调共30台,且A型空调的台数不少于B型空调的一半,两种型号空调的采购总费用不超过217000元,该校共有哪几种采购方案?
(3)在(2)的条件下,采用哪一种采购方案可使总费用最低,最低费用是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】体育组为了了解九年级450名学生排球垫球的情况,随机抽查了九年级部分学生进行排球垫球测试(单位:个),根据测试结果,制成了下面不完整的统计图表:
组别 | 个数段 | 频数 | 频率 |
1 | 5 | 0.1 | |
2 | 21 | 0.42 | |
3 | |||
4 |
(1)表中的数 , ;
(2)估算该九年级排球垫球测试结果小于10的人数;
(3)排球垫球测试结果小于10的为不达标,若不达标的5人中有3个男生,2个女生,现从这5人中随机选出2人调查,试通过画树状图或列表的方法求选出的2人为一个男生一个女生的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com