【题目】如图,AB为⊙O的直径,点C在⊙O外,∠ABC的平分线与⊙O交于点D,∠C=90°.
(1)求证:CD是⊙O的切线;
(2)若∠CDB=60°,AB=18,求的长.
【答案】(1)见解析;(2)3π.
【解析】
(1)连接OD,求出OD//BC,求出OD⊥DC,根据切线的判定得出即可;
(2)求出∠CBD=30°,求出∠AOD=∠ABC=60°,求出半径OA,根据弧长公式求出即可.
(1)连接OD,
∵OD=OB,
∴∠ODB=∠OBD,
∵BD平分∠ABC,
∴∠CBD=∠OBD,
∴∠CBD=∠ODB,
∴OD//BC,
∴∠C+∠ODC=180°,
∵∠C=90°.
∴∠ODC=90°,即OD⊥DC,
∵OD过O,
∴CD是⊙O的切线;
(2)∵∠CDB=60°,∠C=90°,
∴∠CBD=30°,
∵BD平分∠ABC,
∴∠ABC=60°,
∵OD//BC,
∴∠AOD=∠ABC=60°,
∵直径AB=18,
∴半径OA=9,
∴弧AD的长是=3π.
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,对角线AC,BD交于点O,AE⊥BC交CB延长线于E,CF∥AE交AD延长线于点F.
(1)求证:四边形AECF是矩形;
(2)连接OE,若AE=8,AD=10,求OE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学号召全校学生进行安全教育网络学习,并对部分学生的学习情况进行了随机调查.对部分学生的成绩(x为整数,满分100分)进行统计,并绘制了如下统计图表.
调查结果频数分布表
| 调查结果扇形统计图 |
根据所给信息,解答下列问题:
(1)填空:_________,_________;
(2)求扇形统计图中,m的值及A组对应的圆心角的度数;
(3)若参加学习的同学共有1500人,请你估计成绩不低于80分的同学有多少人.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)探究:
问题:如图1,等边三角形ABC的边长为6,点O是∠ABC和∠ACB的角平分线交点,∠FOG=120°,绕点O任意旋转∠FOG,分别交△ABC的两边于D,E两点求四边形ODBE的面积.
讨论:
①甲:在∠FOG旋转过程中,当OF经过点B时,OG一定经过点C.
②乙:小明的分析有道理,这样,我们就可以利用“ASA”证出△ODB≌△OEC.
③丙:因为△ODB≌△OEC,所以只要算出△OBC的面积就得出了四边形ODBE的面积.
老师:同学们的思路很清晰,也很正确,在分析和解决问题时,我们经常会借用特例作辅助线来解决一般问题请你按照探究的思路,直接写出四边形ODBE的面积:________.
(2)应用:
①特例:如图2,∠FOG的顶点O在等边三角形ABC的边BC上,OB=2,OC=4,边OG⊥AC于点E,OF⊥AB于点D,求△BOD面积.
②探究:如图3,已知∠FOG=60°,顶点O在等边三角形ABC的边BC上,OB=2,OC=4,记△BOD的面积为x,△COE的面积为y,求xy的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC的边OA、OC分别在x轴、y轴上,点B 的坐标为(8,4),反比例函数y=(k>0)的图象分别交边BC、AB 于点D、E,连结DE,△DEF与△DEB关于直线DE对称,当点F恰好落在线段OA上时,则k的值是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A是直线y=x与反比例函数y=(k>0,x>0)的交点,B是y=图象上的另一点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C,过点P作PM⊥x轴,PN⊥y轴,垂足分别为M,N.设四边形OMPN的面积为S,P点运动时间为t,则S关于t的函数图象大致为( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴交于点,点,与y轴交于点C,且过点.点P、Q是抛物线上的动点.
(1)求抛物线的解析式;
(2)当点P在直线OD下方时,求面积的最大值.
(3)直线OQ与线段BC相交于点E,当与相似时,求点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图①,在矩形ABCD中,AB=5,,AE⊥BD,垂足是E.点F是点E关于AB的对称点,连接AF、BF.
(1)求AE和BE的长;
(2)若将△ABF沿着射线BD方向平移,设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度).当点F分别平移到线段AB、AD上时,求出相应的m的值;
(3)如图②,将△ABF绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的为,在旋转过程中,设所在的直线与直线AD交于点P,与直线BD交于点Q,若△DPQ为等腰三角形,请直接写出此时DQ的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com