精英家教网 > 初中数学 > 题目详情

如图,在直角梯形ABCD中,∠A=90°,∠B=120°,AD=1,AB=,在底边AB上取点E,在射线DC上取点F,使得∠DEF=120°,当点E是AB的中点时,线段DF的长度是     

 


【考点】直角梯形的性质,锐角三角函数定义,特殊角的三角函数值。

【分析】如图,过E点作EG⊥DF,∴EG=AD=1。


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


甲、乙两车从A地驶向B地,甲车比乙车早行驶2h,并且在途中休息了0.5h,休息前后速度相同,如图是甲乙两车行驶的距离y(km)与时间x(h)的函数图象.

(1)求出图中a的值;

(2)求出甲车行驶路程y(km)与时间x(h)的函数表达式,并写出相应的x的取值范围;

(3)当甲车行驶多长时间时,两车恰好相距40km.

查看答案和解析>>

科目:初中数学 来源: 题型:


已知,则反比例函数且反比例函数的图象在每个象限内y随x的增大而增大,那么反比例函数的关系式为【    】

A.         B.           C.           D.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,四边形ABCD中,∠BAD=∠BCD=90°,AB=AD,AC= cm,则四边形ABCD的面积是         cm2

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在平行四边形ABCD中,对角线AC、BD相交于点O,过点O作直线EF⊥BD,分别交AD、BC于点E和点F,求证:四边形BEDF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:


【阅读材料】己知,如图1,在面积为S的△ABC中,BC=a,AC=b,AB=c,内切⊙O的半径为r.连接OA、OB、OC,△ABC被划分为三个小三角形.

∵S=S△OBC+SOAC+S△OAB=BC·r+AC·r+AB·r=a·r+b·r+c·r=(a+b+c)r

(1)【类比推理】如图2,若面积为S的四边形ABCD存在内切圆(与各边都相切的圆),各边长分别为AB=a,BC=b,CD=c,AD=d,求四边形的内切圆半径r的值;

(2)【理解应用】如图3,在Rt△ABC中,内切圆O的半径为r,⊙O与△ABC分别相切于D、E和F,己知AD=3,BD=2,求r的值.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,以矩形ABCD的对角线AC的中点O为圆心、OA长为半径作⊙O,⊙O经过B、D两点,过点B作BK⊥AC,垂足为K,过点D作DH∥KB,DH分别与AC、AB、⊙O及CB的延长线相交于点E、F、G、H。

(1)求证:AE=CK

(2)若AB=a,AD=a(a为常数),求BK的长(用含a的代数式表示)。

(3)若F是EG的中点,且DE=6,求⊙O的半径和GH的长。

查看答案和解析>>

科目:初中数学 来源: 题型:


 把直线沿y轴方向平移m个单位后,与直线的交点在第二象限,则m的取值范围是【    】

A.      B.       C.       D.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在矩形ABCD中,AB=3,BC=4.动点P从点A出发沿AC向终点C运动,同时动点Q从点B出发沿BA向点A运动,到达A点后立刻以原来的速度沿AB返回.点PQ运动速度均为每秒1个单位长度,当点P到达点C时停止运动,点Q也同时停止.连接PQ,设运动时间为tt >0)秒.

(1)求线段AC的长度;

(2)当点Q从点B向点A运动时(未到达A点),求△APQ的面积S关于t的函数关系式,并写出t的取值范围;

(3)伴随着PQ两点的运动,线段PQ的垂直平分线为l

①当l经过点A时,射线QPAD于点E,求AE的长;

②当l经过点B时,求t的值.

查看答案和解析>>

同步练习册答案