精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABCACB=90°AB=5BC=3PAB边上的动点(不与点B重合)将△BCP沿CP所在的直线翻折,得到,连接,下面有四个判断:

①当AP=BP时,CP

②当AP=BP时,

③当CPAB时,

长度的最小值是1

所有正确结论的序号是( )

A.①③④B.①②C.①②④D.②③④

【答案】C

【解析】

①由直角三角形斜边上的中线等于斜边的一半以及折叠的性质,易得∠AB′P=CPB′,即可得AB′CP;②由PA=PB′=PC=PB,可得点AB′CB在以P为圆心,PA长为半径的圆上,然后由圆周角定理,求得答案;③当CPAB时,易证得ACP∽△ABC,然后由相似三角形的对应边成比例,求得AP的长;④易得当B′在线段AC上时,AB′的长度有最小值,继而求得答案.

∵在△ABC中,∠ACB=90°,AP=BP

AP=BP=CP

由折叠的性质可得:CP=B′P∠CPB′=∠BPC=(180°∠APB′)

AP=B′P

∠AB′P=′B′AP=(180°∠APB′)

∠AB′P=∠CPB′

AB′CP,故①正确;

②∵在ABC中,∠ACB=90°,AP=BP,将△BCP沿CP所在的直线翻折,得到

PA=PB′=PC=PB

∴点AB′CB在以P为圆心,PA长为半径的圆上,

∵∠B′PC与∠B′AC所对的圆心角和圆周角,

∠B′PC=2∠B′AC,故②正确;

③当CPAB时,∠APC=∠ACB

∠PAC=∠CAB

△ACP∽△ABC

∵在Rt△ABC中,AC==4

AP==,故③错误;

④由轴对称的性质可知:BC=CB′=3

CB′长度固定不变,

∵在 AB′C中,AB′ACB′C

∴当B′在线段AC上时, AB′有最小值,此时,AB′=ACB′C=43=1,故④正确.

故选C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,在矩形ABCD中,对角线ACBD相交于点O,过点O作直线EFBD,且交AC于点E,交BC于点F,连接BEDF,且BE平分∠ABD.

1)①求证:四边形BFDE是菱形;②求∠EBF的度数.
2)把(1)中菱形BFDE进行分离研究,如图2GI分别在BFBE边上,且BG=BI,连接GDHGD的中点,连接FH,并延长FHED于点J,连接IJIHIFIG.试探究线段IHFH之间满足的数量关系,并说明理由;
3)把(1)中矩形ABCD进行特殊化探究,如图3,矩形ABCD满足AB=AD时,点E是对角线AC上一点,连接DE,作EFDE,垂足为点E,交AB于点F,连接DF,交AC于点G.请直接写出线段AGGEEC三者之间满足的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某宾馆有120间标准房,当每间标准房每天价格为100元时,每天都客满,市场调查表明每间标准房每天价格在100~180元之间(含100元,180元)浮动时,每提高5元,日均入住数减少3间,每间标准房如果有人入住每天各种费用40元,如果没人入住每天需各种费用10元,宾馆将每间标准房每天价格提高到多少元时,客房的日收益额最大?(注:收益额营业收入各种费用)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,抛物线yax2bxc (a≠0)的顶点为M (19), 经过抛物线上的两点A(3,-7)B (3, m)的直线交抛物线的对称轴于点C

(1)求抛物线的解析式和直线AB的解析式;

(2)在抛物线上是否存在点D,使得SDAC2SDCM?若存在,求出点D的坐标;若不存在,请说明理由.

(3)若点P在抛物线上,点Qx轴上,当以点AMPQ为顶点的四边形是平行四边形时,直接写出满足足条件的点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点是直线与反比例函数为常数)的图象的交点.过点轴的垂线,垂足为,且

1)求点的坐标及的值;

2)已知点,过点作平行于轴的直线,交直线于点,交反比例函数为常数)的图象于点,交垂线于点.若,结合函数的图象,直接写出的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校初二和初三两个年级各有600名同学,为了科普卫生防疫知识,学校组织了一次在线知识竞赛,小宇分别从初二、初三两个年级随机抽取了40名同学的成绩(百分制),并对数据(成绩)进行整理、描述和分析,下面给出了部分信息.

.初二、初三年级学生知识竞赛成绩不完整的频数分布直方图如下(数据分成5组:):

.初二年级学生知识竞赛成绩在这一组的数据如下:

80 80 81 83 83 84 84 85 86 87 88 89 89

.初二、初三学生知识竞赛成绩的平均数、中位数、方差如下:

平均数

中位数

方差

初二年级

80.8

96.9

初三年级

80.6

86

153.3

根据以上信息,回答下列问题:

1)补全上面的知识竞赛成绩频数分布直方图;

2)写出表中的值;

3同学看到上述的信息后,说自己的成绩能在本年级排在前40%同学看到同学的成绩后说:“很遗憾,你的成绩在我们年级进不了前50%”.请判断同学是________(填“初二”或“初三”)年级的学生,你判断的理由是________

4)若成绩在85分及以上为优秀,请估计初二年级竞赛成绩优秀的人数为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小宇设计了一个随机碰撞模拟器:在模拟器中有三种型号的小球,它们随机运动,当两个小球相遇时会发生碰撞(不考虑多个小球相撞的情况).若相同型号的两个小球发生碰撞,会变成一个型小球;若不同型号的两个小球发生碰撞,则会变成另外一种型号的小球,例如,一个型小球和一个型小球发生碰撞,会变成一个型小球.现在模拟器中有型小球12个,型小球9个,型小球10个,如果经过各种两两碰撞后,最后只剩一个小球.以下说法:

①最后剩下的小球可能是型小球;

②最后剩下的小球一定是型小球;

③最后剩下的小球一定不是型小球.

其中正确的说法是:(

A.B.②③C.D.①③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,于点,过点与边相切于点,交于点的直径.

1)求证:

2)若,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,∠BAC=90°,AB=2AC,点A(2,0)、B(0,4),点C在第一象限内,双曲线y=x>0)经过点C.将ABC沿y轴向上平移m个单位长度,使点A恰好落在双曲线上,则m的值为________

查看答案和解析>>

同步练习册答案