【题目】为了落实党中央提出的“惠民政策”,我市今年计划开发建设A、B两种户型的“廉租房”共40套.投入资金不超过200万元,又不低于198万元.开发建设办公室预算:一套A型“廉租房”的造价为5.2万元,一套B型“廉租房”的造价为4.8万元.
(1)请问有几种开发建设方案?
(2)哪种建设方案投入资金最少?最少资金是多少万元?
(3)在(2)的方案下,为了让更多的人享受到“惠民”政策,开发建设办公室决定通过缩小“廉租房”的面积来降低造价、节省资金.每套A户型“廉租房”的造价降低0.7万元,每套B户型“廉租房”的造价降低0.3万元,将节省下来的资金全部用于再次开发建设缩小面积后的“廉租房”,如果同时建设A、B两种户型,请你直接写出再次开发建设的方案.
【答案】(1)共有6种方案;(2)当x=15时,W最小,此时W最小=0.4×15+192=198万元.
(3)再建设方案:①A型住房1套,B型住房3套;②A型住房2套,B型住房2套;③A型住房3套,B型住房1套.
【解析】
(1)设建设A型x套,B型(40﹣x)套,然后根据投入资金不超过200万元,又不低于198万元列出不等式组,求出不等式组的解集,再根据x是正整数解答.
(2)设总投资W元,建设A型x套,B型(40﹣x)套,然后根据总投资等于A、B两个型号的投资之和列式函数关系式,再根据一次函数的增减性解答.
(3)设再次建设A、B两种户型分别为a套、b套,根据再建设的两种户型的资金等于(2)中方案节省的资金列出二元一次方程,再根据a、b都是正整数求解即可.
解:(1)设建设A型x套,则B型(40﹣x)套,
根据题意得,,
解不等式①得,x≥15;解不等式②得,x≤20.
∴不等式组的解集是15≤x≤20.
∵x为正整数,∴x=15、16、17、18、19、20.
答:共有6种方案.
(2)设总投资W万元,建设A型x套,则B型(40﹣x)套,
W=5.2x+4.8×(40﹣x)=0.4x+192,
∵0.4>0,
∴W随x的增大而增大.
∴当x=15时,W最小,此时W最小=0.4×15+192=198万元.
(3)设再次建设A、B两种户型分别为a套、b套,
则(5.2﹣0.7)a+(4.8﹣0.3)b=15×0.7+(40﹣15)×0.3,整理得,a+b=4.
a=1时,b=3,
a=2时,b=2,
a=3时,b=1,
∴再建设方案:①A型住房1套,B型住房3套;
②A型住房2套,B型住房2套;
③A型住房3套,B型住房1套.
科目:初中数学 来源: 题型:
【题目】如图,直角梯形OABC的直角顶点是坐标原点,边OA,OC分别在x轴,y轴的正半轴上.OA∥BC,D是BC上一点,BD=OA=,AB=3,∠OAB=45°,E,F分别是线段OA,AB上的两个动点,且始终保持∠DEF=45°.设OE=x,AF=y,则y与x的函数关系式为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】2016年,某贫困户的家庭年人均纯收入为2500元,通过政府产业扶持,发展了养殖业后,到2018年,家庭年人均纯收入达到了3600元.
(1)求该贫困户2016年到2018年家庭年人均纯收入的年平均增长率;
(2)若年平均增长率保持不变,2019年该贫困户的家庭年人均纯收入是否能达到4200元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,双曲线y=与直线y=x交于A、B两点,点P(a,b)在双曲线y=上,且0<a<4.
(1)设PB交x轴于点E,若a=1,求点E的坐标;
(2)连接PA、PB,得到△ABP,若4a=b,求△ABP的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形网格中,每一个小正方形的边长都是1个单位长度,在平面直角坐标系内,△ABC的三个顶点坐标分别为A(1,1),B(3,2),C(2,4).
(1)画出△ABC关于x轴对称的△A1B1C1,直接写出点A1的坐标;
(2)画出△ABC绕点O逆时针旋转90°后的△A2B2C2;
(3)在(2)的条件下,求BC边所扫过的面积.(结果保留π)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在平面直角坐标系中,抛物线与轴交于点、,与轴交于点,抛物线的顶点到轴的距离为,.
(1)如图1,求抛物线的解析式;
(2)如图2,点为第三象限内的抛物线上一点,连接交轴于点,过点作轴于点,连接并延长交于点,求证:;
(3)如图3,在(2)的条件下,点为第二象限内的抛物线上的一点,分别连接、,点为的中点,点为第二象限内的一点,分别连接,,,且,,若,求点的横坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某超市销售一种高档蔬菜“莼菜”,其进价为16元/kg.经市场调查发现:该商品的日销售量y(kg)是售价x(元/kg)的一次函数,其售价、日销售量对应值如表:
售价(元/) | 20 | 30 | 40 |
日销售量() | 80 | 60 | 40 |
(1)求关于的函数解析式(不要求写出自变量的取值范围);
(2)为多少时,当天的销售利润 (元)最大?最大利润为多少?
(3)由于产量日渐减少,该商品进价提高了元/,物价部门规定该商品售价不得超过36元/,该商店在今后的销售中,日销售量与售价仍然满足(1)中的函数关系.若日销售最大利润是864元,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题背景:
如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.
(1)实践运用:
如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为 .
(2)知识拓展:
如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com