精英家教网 > 初中数学 > 题目详情
如图,已知AB是⊙O的直径,点E为⊙O上一点,且AC平分∠BAE交⊙O于C,过C作CD⊥AE,垂足为D.
(1)求证:CD为⊙O的切线;
(2)若⊙O的直径为10,圆心O到AD的距离为4,求AE和ED的长度.
考点:切线的判定与性质
专题:
分析:(1)通过角平分线和有两半径为边的三角形是等腰三角形可得到OC∥AD,再证明OC⊥CD.
(2)如图2,过点O作OH⊥AD于点H.利用勾股定理求得AH=3,则由垂径定理来求AE的长度;通过△ADC∽△ACB的对应边成比例求得AD的长度,则DE=AD-AE.
解答:(1)证明:连OC,BC,如图1,
∵AC平分∠BAE,
∴∠1=∠2,
∵OA=OC,
∴∠2=3,
∴∠1=∠3,
∴AD∥OC.
又∵CD⊥AE,
∴OC⊥CD.
又∵OC是圆O的半径,
∴PC是⊙O的切线.

(2)解:如图2,连接OD、OC、BC.
由(1)知,OC⊥CD.
∵AD⊥CD,
∴OC∥AD.
过点O作OH⊥AD于点H,则四边形DHOC是矩形,且OH═CD=4,AE=2AH.
∵⊙O的直径AB为10,
∴OA=5,
∴在直角△AOH中,由勾股定理得到:AH=
AO2-OH2
=
52-42
=3,
∴AE=2AH=6.
∵∠ADC=∠ACB=90°,∠DAC=∠DAB,
∴△ADC∽△ACB,
AD
AC
=
AC
AB
,即
AD
AC
=
AC
10
,则AC2=10AD.
又由勾股定理得到:AC2=AD2+CD2
∴AD2-10AD+16=0.
解得 AD=8或AD=2(舍去),
故DE=AD-AE=8-6=2.
综上所述,AE和ED的长度分别是6、2.
点评:本题考查了切线的判定与性质,证明切线的问题转化为证明线段垂直的问题.要学会充分利用特殊角进行角度计算,确定边之间的数量.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知任意△ABC,D、E是AB、BC上的两个点,D是定点,E是动点.请问如何尺规操作才能使S△BED=S△ADC

查看答案和解析>>

科目:初中数学 来源: 题型:

若方程x2+2x+11-k(x-3)=0的两个根都大于2,试求k的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:(
1
8
)2011
×(-8)2012

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:(-198)+(-197)+(-100)+(-99)+(-98).

查看答案和解析>>

科目:初中数学 来源: 题型:

观察并写出该图片的规律.

查看答案和解析>>

科目:初中数学 来源: 题型:

蔡先生开办火锅店需启动资金13万元,他有存款5万元,其余向银行贷款,两年后应还本付息88200元.求这笔贷款的年利率.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算:
9
4
-
3-8
-
327
+
9

查看答案和解析>>

科目:初中数学 来源: 题型:

已知△ABC,D在AC上,AD:DC=2:1,能否在AB上找到一点E,使得线段EC的中点在BD上.

查看答案和解析>>

同步练习册答案