精英家教网 > 初中数学 > 题目详情
9.(1)如图1,△ABC中,∠C=90°,AB的垂直平分线交AC于点D,连接BD.若AC=2,BC=1,则△BCD的周长为3;
(2)O为正方形ABCD的中心,E为CD边上一点,F为AD边上一点,且△EDF的周长等于AD的长.
①在图2中求作△EDF(要求:尺规作图,不写作法,保留作图痕迹);
②在图3中补全图形,求∠EOF的度数;
③若$\frac{AF}{CE}=\frac{8}{9}$,则$\frac{OF}{OE}$的值为$\frac{2\sqrt{2}}{3}$.

分析 (1)由线段垂直平分线的性质得出BD=AD,得出△BCD的周长=BC+CD+BD=BC+AC,即可得出结果;
(2)①在AD上截取AH=DE,再作EH的垂直平分线,交AD于F,△EDF即为所求;
②连接OA、OD、OH,由正方形的性质得出∠1=∠2=45°,由SAS证明△ODE≌△OAH,得出∠DOE=∠AOH,OE=OH,得出∠EOH=90°,证出EF=HF,由SSS证明△EOF≌△HOF,得出∠EOF=∠HOF=45°即可;
③作OG⊥CD于G,OK⊥AD于K,设AF=8t,则CE=9t,设OG=m,由正方形的性质得出GE=CE-CG=9t-m,DE=2CG-CE=2m-9t,FK=AF-KA=8t-m,DF=2DK-AF=2m-8t,由HL证明Rt△EOG≌Rt△HOK,得出GE=KH,因此EF=GE+FK=17t-2m,由勾股定理得出方程,解方程求出m=6t,得出OG=OK=6t,GE=9t-m=9t-6t=3t,FK=8t-m=2t,由勾股定理即可得出结果.

解答 解:(1)∵AB的垂直平分线交AC于点D,
∴BD=AD,
∴△BCD的周长=BC+CD+BD=BC+AC=1+2=3,
故答案为:3; 
(2)①如图1所示:
△EDF即为所求; 
②如图2所示:AH=DE,
连接OA、OD、OH,
∵点O为正方形ABCD的中心,
∴OA=OD,∠AOD=90°,∠1=∠2=45°,
在△ODE和△OAH中,
$\left\{\begin{array}{l}{OA=OD}\\{∠2=∠1}\\{AH=DE}\end{array}\right.$,
∴△ODE≌△OAH(SAS),
∴∠DOE=∠AOH,OE=OH,
∴∠EOH=90°,
∵△EDF的周长等于AD的长,
∴EF=HF,
在△EOF和△HOF中,
$\left\{\begin{array}{l}{OE=OH}\\{OF=OF}\\{EF=HF}\end{array}\right.$,
∴△EOF≌△HOF(SSS),
∴∠EOF=∠HOF=45°;
③作OG⊥CD于G,OK⊥AD于K,如图3所示:
设AF=8t,则CE=9t,设OG=m,
∵O为正方形ABCD的中心,
∴四边形OGDK为正方形,CG=DG=DK=KA=$\frac{1}{2}$AB=OG,
∴GE=CE-CG=9t-m,DE=2CG-CE=2m-9t,FK=AF-KA=8t-m,DF=2DK-AF=2m-8t,
由(2)②知△EOF≌△HOF,
∴OE=OH,EF=FH,
在Rt△EOG和Rt△HOK中,
$\left\{\begin{array}{l}{OE=OH}\\{OG=OK}\end{array}\right.$,
∴Rt△EOG≌Rt△HOK(HL),
∴GE=KH,
∴EF=GE+FK=9t-m+8t-m=17t-2m,
由勾股定理得:DE2+DF2=EF2
∴(2m-9t)2+(2m-8t)2=(17t-2m)2
整理得:(m+6t)(m-6t)=0,
∴m=6t,
∴OG=OK=6t,GE=9t-m=9t-6t=3t,FK=8t-m=2t,
∴$\frac{OF}{OE}$=$\frac{\sqrt{O{K}^{2}+F{K}^{2}}}{\sqrt{O{G}^{2}+G{E}^{2}}}$=$\frac{\sqrt{36{t}^{2}+4{t}^{2}}}{\sqrt{36{t}^{2}+9{t}^{2}}}$=$\sqrt{\frac{40}{45}}$=$\frac{2\sqrt{2}}{3}$.
故答案为$\frac{2\sqrt{2}}{3}$.

点评 本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、线段垂直平分线的性质、勾股定理、解方程等知识;本题综合性强,有一定难度,熟练掌握正方形的性质,证明三角形全等是解决问题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.如图①,四边形OACB为长方形,A(-6,0),B(0,4),直线l为函数y=-2x-5的图象.
(1)点C的坐标为(-6,4);
(2)若点P在直线l上,△APB为等腰直角三角形,∠APB=90°,求点P的坐标;
小明的思考过程如下:
第一步:添加辅助线,如图②,过点P作MN∥x轴,与y轴交于点N,与AC的延长线交于点M;
第二步:证明△MPA≌△NBP;
第三步:设NB=m,列出关于m的方程,进而求得点P的坐标.
请你根据小明的思考过程,写出第二步和第三步的完整解答过程;
(3)若点P在直线l上,点Q在线段AC上(不与点A重合),△QPB为等腰直角三角形,直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.如图,AB是⊙O的一条弦,点C是⊙O上一动点,且$\widehat{AB}$=60°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G,H两点.若⊙O的半径为6,则GE+FH的最大值为9.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,梯形ABCD中,AB∥CD,∠ABC=90°,AB=8,CD=6,BC=4,AB边上有一动点P(不与A、B重合),连结DP,作PQ⊥DP,使得PQ交线段BC于点E,设AP=x.
(1)当x为何值时,△APD是等腰三角形?
(2)若设BE=y,求y关于x的函数关系式;
(3)若BC的长a可以变化,在现在的条件下,是否存在点P,使得PQ经过点C?若不存在,请说明理由;若存在,写出当BC的长在什么范围内时,可以存在这样的点P,使得PQ经过点C,并求出相应的AP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.在矩形ABCD中,AB=3厘米,AD=4厘米,点P以每秒$\frac{4}{5}$厘米的速度在BC上从B往C运动,同时点Q以每秒1厘米的速度在CA上从C往A运动,设运动时间为t秒.
(1)当PQ平行于AB时,求t的值;
(2)是否存在某一时刻t,使点P、Q、D三点在同一直线上?若存在,求出t;若不存在,请说明理由;
(3)当△PQC为等腰三角形时,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,小亮以0.5m/s的速度从A点出发前进10m,向右转15°,再前进10m,又向右转15°,…,这样一直走下去,他第一次回到出发点A时,从开始到停止共所需时间为480s.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.对整数2,3,6,10(每个数只用一次)进行加减乘除四则运算,使其运算结果等于24,运算式可以是(10-6)×3×2=24.(写一种)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.用4个棱长为1的正方体搭成一个几何模型,其从正面、左面看到的图形如图所示,则该几何体从上面看到的图形不可能为(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,∠AOB=42°,∠BOC=86°,OD为∠AOC的平分线,∠BOD=22°.

查看答案和解析>>

同步练习册答案