【题目】一般来说,依据数学研究对象本质属性的相同点和差异点,将数学对象分为不同种类的数学思想叫做“分类”的思想;将事物进行分类,然后对划分的每一类分别进行研究和求解的方法叫做“分类讨论”的方法.请依据分类的思想和分类讨论的方法解决下列问题:
如图,在中,.
若是锐角,请探索在直线上有多少个点,能保证(不包括全等)?
请对进行恰当的分类,直接写出每一类在直线上能保证(不包括全等)的点的个数?
【答案】(1)见解析;(2)见解析.
【解析】
(1)此题应分作三种情况考虑:①点D在线段AB上,若△ACD∽△ABC,已知的等量条件是公共角∠BAC,那么必须满足∠ACD=∠ABC,由于∠ACB>∠ABC,因此在线段AB上,有一个符合条件的D点;②点D在线段AB的延长线上,此时已知的等量条件仍为公共角∠BAC,由于∠ACD>∠ACB>∠ABC,因此这两个三角形不可能相似,故在这种情况下,不存在符合条件的D点;③点D在线段AB的反向延长线上,由于∠BAC是锐角,那么∠BAC<90°<∠DAC,根据三角形的外角性质知:∠CAD>∠BCA>∠ABC,因此这两个三角形也不可能相似,故此种情况下也不存在符合条件的D点.
(2)可将∠BAC分作三种情况:①∠BAC是锐角,②∠BAC是直角,③∠BAC是钝角;每种情况都可按照(1)题的分类讨论法进行求解.
解:①如图,若点在线段上,由于,可以作一个点满足,使得;
②如图,若点在线段的延长线上,则,与条件矛盾,因此,这样的点不存在;
③如图,若点在线段的反向延长线上,由于是锐角,则,不可能有,因此,这样的点不存在.
综上所述,这样的点有一个.
注:③中用“是钝角,中只可能是钝角,则”说明不存在点亦可.
若为锐角,由知,这样的点有一个(如图);
若为直角,这样的点有两个(如图);
若为钝角,这样的点有个(如图).
科目:初中数学 来源: 题型:
【题目】下图取材于我国古代数学家赵爽的《勾股圆方图》,由四个全等的直角三角形与中间的小正方形拼成的一个大正方形如果大正方形的面积是13,小正方形的面积是4,直角三角形的较短直角边为a,较长直角边为b,那么的值为______________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,与x轴的一个交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则下列结论:①4ac﹣b2<0;②2a﹣b=0;③a+b+c<0;④点M(x1,y1)、N(x2,y2)在抛物线上,若x1<x2,则y1≤y2,其中正确结论的个数是( )
A.1个 B.2个 C.3个 D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们把长与宽之比为的矩形纸片称为标准纸.不难发现,将一张标准纸如图一次又一次对开后,所得的矩形纸片都是标准纸.现有一张标准纸,,,那么把它第次对开后所得标准纸的周长是________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平面直角坐标系中,A(0,3),B(4,0),C(﹣1,﹣1),点 P 线段 AB上一动点,将线段 AB 绕原点 O 旋转一周,点 P 的对应点为 P′,则 P′C 的最大值为_____,最小值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,ABCO的顶点A,B的坐标分别是A(3,0),B(0,2),动点P在直线y=x上运动,以点P为圆心,PB长为半径的⊙P随点P运动,当⊙P与四边形ABCO的边所在直线相切时,P点的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数的图象如图所示,有以下结论:①;②;③;④;⑤其中所有正确结论的序号是( )
A. ①② B. ①③④ C. ①②③⑤ D. ①②③④⑤
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com