精英家教网 > 初中数学 > 题目详情
19.如图,在△BCD中,若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.

分析 根据邻补角定义可得∠CDB=180°-125°=55°,根据平行线的性质可得∠CBD=∠A=55°,然后再利用三角形内角和定理计算出∠C的度数.

解答 解:∵∠BDE=125°,
∴∠CDB=180°-125°=55°,
∵AE∥BD,∠A=55°,
∴∠CBD=55°,
∴∠C=180°-55°-55°=70°.

点评 此题主要考查了平行线的性质和三角形内角和定理,关键是掌握两直线平行,同位角相等.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.如图,P在∠AOB内,点M、N分别是点P关于AO、BO的对称点,MN分 别交OA、OB于E、F.
(1)若△PEF的周长是10cm,求MN的长.
(2)若∠AOB=30°,试求∠MON的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.已知抛物线y=x2+bx+c的对称轴为x=-1,且经过点 (-4,5).
(1)求抛物线的解析式;
(2)抛物线y有无最小值,若有,求出最小值.若无,请说明理由;
(3)当-2<x<3时,求y的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,?ABCD中,BE⊥AD于点E,且点E为AD的中点,AD=BE=4,点P从点A出发以每秒1个单位长度的速度沿射线AD方向运动,设点P的运动时间为t秒,点P出发后过点P作AD的垂线,交折线AB-BC于点Q,以PQ为边向左作正方形PQMN.

(1)直接写出点N与点D重合时,t的值.
(2)当0≤t≤2时,用含t的代数式表示线段EN的长.
(3)如图②,当0≤t≤2时,设点O为BE的中点,请直接写出△OQM为等腰三角形时,t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.如图,二次函数y=-x2+3x+m的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C点.
(1)求m的值及C点坐标;
(2)P为抛物线上一点,它关于直线BC的对称点为Q.
①当四边形PBQC为菱形时,求点P的坐标;
②点P的横坐标为t(0<t<4),当t为何值时,四边形PBQC的面积最大,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.定义一种运算★,其规则为a★b=a2-b,例如计算3★2=32-2=7.请你根据上面规定试求(-2★1)★9的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.如图,已知等边△ABC的边长为6,折叠△ABC,使得点A恰好与边BC上的点D重合,折痕为EF(点E、F分别在边AB、AC上)
(1)△BED和△CDF相似吗?并说明理由.
(2)若BD:DC=2:1,BE=y,CF=x,求y与x的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知:如图,在△ABC中,点D、F在边AB上,点E在边AC上,且DE∥BC,AD2=AB•AF,求证:$\frac{EF}{CD}$=$\frac{DE}{BC}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

12.如图,自行车的车身为三角结构,这样做根据的数学道理是三角形具有稳定性.

查看答案和解析>>

同步练习册答案