精英家教网 > 初中数学 > 题目详情

【题目】如图,为了测量小山顶的铁塔AB高度,王华和杨丽在平地上的C点处测得A点的仰角为45°,向前走了18m后到达D点,测得A点的仰角为60°,B点的仰角为30°

1)求证:ABBD

2)求证铁塔AB的高度.(结果精确到0.1米,其中1.41≈1.73

【答案】1)证明见解析;(228.4

【解析】

1)延长ABCD延长线于点E,由∠ADE=60°、∠BDE=30°求得∠ADB=DAE=30°即可;

2)设BE=x,则AB=DB=2x,据此得DExCE=CD+DE=18xAE=AB+BE=3x,根据∠ACE=45°知CE=AE,由此建立关于x的方程,解之求得x的值即可得.

1)如图,延长ABCD延长线于点E,则AECE

∵∠ADE=60°,∴∠DAE=30°.

∵∠BDE=30°,∴∠ADB=ADE﹣∠BDE=30°,则∠ADB=DAE=30°,∴AB=DB

2)设BE=x,则AB=DB=2x,∴DE=BDcosBDE=2xx

CD=18,∴CE=CD+DE=18xAE=AB+BE=3x

∵∠ACE=45°,∴CE=AE,即18x=3x,解得:x=9+3,所以AB=2x=18+628.4(米).

答:铁塔AB的高度为28.4米.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小波在复习时,遇到一个课本上的问题,温故后进行了操作、推理与拓展.

(1)温故:如图1,在ABC中,ADBC于点D,正方形PQMN的边QMBC上,顶点PN分别在AB AC上,若BC=6AD=4,求正方形PQMN的边长.

(2)操作:能画出这类正方形吗?小波按数学家波利亚在《怎样解题》中的方法进行操作:如图2,任意画ABC,在AB上任取一点P′,画正方形P′Q′M′N′,使Q′,M′BC边上,N′ABC内,连结B N′并延长交AC于点N,画NMBC于点MNPNMAB于点PPQBC于点Q,得到四边形PQMN.小波把线段BN称为波利亚线

(3)推理:证明图2中的四边形PQMN 是正方形.

(4)拓展:在(2)的条件下,于波利业线B N上截取NE=NM,连结EQEM(如图3).当tan∠NBM=时,猜想∠QEM的度数,并尝试证明.

请帮助小波解决温故推理拓展中的问题.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点是反比例函数图像上的两点(点在点左侧),过点轴于点,交于点,延长轴于点,已知,则的值为__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中有一直角三角形AOBO为坐标原点,OA=1,tan∠BAO=3,将此三角形绕原点O逆时针旋转90°,得到△DOC,抛物线yax2+bx+c经过点ABC

(1)求抛物线的解析式;

(2)若点P是第二象限内抛物线上的动点,其横坐标为t,设抛物线对称轴lx轴交于一点E,连接PE,交CDF,求以CEF为顶点三角形与△COD相似时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB⊙O的直径,MOA的中点,弦CDAB于点M,过点DDECACA的延长线于点E

(1)连接AD,则∠OAD   °;

(2)求证:DE⊙O相切;

(3)F上,∠CDF45°,DFAB于点N.若DE3,求FN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的边长为20cm,ABC=120°,对角线AC,BD相交于点O,动点P从点A出发,以4cm/s的速度,沿A→B的路线向点B运动;过点PPQBD,与AC相交于点Q,设运动时间为t秒,0<t<5.

(1)设四边形PQCB的面积为S,求St的关系式;

(2)若点Q关于O的对称点为M,过点P且垂直于AB的直线l交菱形ABCD的边AD(或CD)于点N,当t为何值时,点P、M、N在一直线上?

(3)直线PNAC相交于H点,连接PM,NM,是否存在某一时刻t,使得直线PN平分四边形APMN的面积?若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校为了解本校学生平均每天的体育活动时间情况,随机抽取部分学生进行问卷调查,并将调查结果人数分为ABCD四个等级设活动时间为t(小时),At1B1≤t1.5C1.5≤t2Dt≥2,根据调查结果绘制了如图所示的两幅不完整的统计图.

请你根据图中信息解答下列问题:

1)该校共调查了多少名学生;

2)将条形统计图补充完整;

3)求出表示A等级的扇形圆心角的度数;

4)在此次问卷调查中,甲班有2人平均每天大课间活动时间不足1小时,乙班有3人平均每天大课间活动时间不足1小时,若从这5人中任选2人去参加座谈,试用列表或画树状图的方法求选出的2人来自不同班级的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1和如图2分别是表示甲、乙两所学校男、女生比例的统计图,请判断下列说法是否正确,并说明理由.

(1)甲校的女生人数比男生人数多.

(2)乙校的男、女生人数一样多.

(3)甲校女生人数比乙校女生人数多.

(4)不能比较两个学校女生人数的多少.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某市连续5天的天气情况.

1)利用方差判断该市这5天的日最高气温波动大还是日最低气温波动大;

2)根据如图提供的信息,请再写出两个不同类型的结论.

查看答案和解析>>

同步练习册答案