【题目】如图,在Rt△ABC中,∠ACB=90°,BC=30cm,AC=40cm,点D在线段AB上,从点B出发,以2cm/s的速度向终点A运动,设点D的运动时间为t秒。
(1)点D在运动t秒后,BD= cm(用含有t的式子表示)
(2)AB=cm,AB边上的高为cm;
(3)点D在运动过程中,当△BCD为等腰三角形时,求t的值.
【答案】(1);(2)50;24;(3)t的值为15s或18s或12.5s.
【解析】
(1)根据点D以2cm/s的速度向终点A运动,设点D的运动时间为t秒,即可表示出;
(2)利用勾股定理求出AB的长,再利用三角形面积公式即可求得AB边上的高;
(3)分三种情况:①当BD=BC=30cm时得到2t=30,即可得到结果;
②当CD=CB=30cm时,作CE⊥AB于E,则,由(1)得CE=24,由勾股定理求出BE,即可得出结果;
③当DB=DC时,∠BCD=∠B,证明DA=DC,得出AD=DB=AB,即可得出结果.
(1) ∵点D以2cm/s的速度向终点A运动,设点D的运动时间为t秒
∴
故答案为:
(2)由勾股定理得,
设AB边上的高为h,
∴,
解得:
故答案为:50;24.
(3) 分三种情况:
①当BD=BC=30cm时,2t=30
∴t=15(s)
②当CD=CB=30cm时,作CE⊥AB于E,如图所示:
则
由(2)得,AB边上的高CE=24,
在中,由勾股定理得:
∴
③当DB=DC时,∠BCD=∠B
∵∠A=90°﹣∠B,∠ACD=90°﹣∠BCD,
∴∠ACD=∠A
∴DA=DC
∴AD=DB=AB=25(cm)
∴
综上所述,t的值为15s或18s或12.5s.
科目:初中数学 来源: 题型:
【题目】某校为了解“课程选修”的情况,对报名参加“艺术鉴赏”、“科技制作”、“数学思维”、“阅读写作”这四个选修项目的学生(每人限报一项)进行抽样调查.下面是根据收集的数据绘制的两幅不完整的统计图.
请根据图中提供的信息,解答下面的问题:
(1)此次共调查了 名学生,扇型统计图中“艺术鉴赏”部分的圆心角是 度.
(2)请把这个条形统计图补充完整.
(3)现该校共有800名学生报名参加这四个选修项目,请你估计其中有多少名学生选修“科技制作”项目.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC 中,AB=AC,点 D 在 BC 上,DE⊥AB,DF⊥AC,垂足分别为点 E、F,且 DE=DF.
求证:点 D 为 BC 的中点.(请用两种不同的方法证明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于任意一点 P 和线段 a.若过点 P 向线段 a 所在直线作垂线,若垂足落在线段 a 上,则称点 P 为线段a 的内垂点.在平面直角坐标系 xOy 中,已知点 A(-1,0),B(2,0 ) ,C(0,2).
(1)在点 M(1,0),N(3,2),P(-1,-3)中,是线段 AB 的内垂点的是 ;
(2)已知点 D(-3,2),E(-3,4).在图中画出区域并用阴影表示,使区域内的每个点均为 Rt△CDE三边的内垂点;
(3)已知直线 m 与 x 轴交于点 B,与 y 轴交于点 C,将直线 m 沿 y 轴平移 3 个单位长度得到直线 n . 若存在点 Q,使线段 BQ 的内垂点形成的区域恰好是直线 m 和 n 之间的区域(包括边界),直接写出点 Q 的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=﹣x2+2x经过原点O,且与直线y=x﹣2交于B,C两点.
(1)求抛物线的顶点A的坐标及点B,C的坐标;
(2)求证:∠ABC=90°;
(3)在直线BC上方的抛物线上是否存在点P,使△PBC的面积最大?若存在,请求出点P的坐标;若不存在,请说明理由;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图所示的网格中有四条线段AB、CD、EF、GH(线段端点在格点上),
⑴选取其中三条线段,使得这三条线段能围成一个直角三角形.
答:选取的三条线段为 .
⑵只变动其中两条线段的位置,在原图中画出一个满足上题的直角三角形(顶点仍在格点,并标上必要的字母).
答:画出的直角三角形为△ .
⑶所画直角三角形的面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(6,0),B(8,5),将线段OA平移至CB,点D在x轴正半轴上(不与点A重合),连接OC,AB,CD,BD.
(1)求对角线AC的长;
(2)设点D的坐标为(x,0),△ODC与△ABD的面积分别记为S1,S2.设S=S1﹣S2,写出S关于x的函数解析式,并探究是否存在点D使S与△DBC的面积相等?如果存在,用坐标形式写出点D的位置;如果不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一艘游轮在A处测得北偏东45°的方向上有一灯塔B.游轮以20海里/时的速度向正东方向航行2小时到达C处,此时测得灯塔B在C处北偏东15°的方向上,求A处与灯塔B相距多少海里?(结果精确到1海里,参考数据:≈1.41,≈1.73)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com