精英家教网 > 初中数学 > 题目详情

【题目】把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是___

【答案】12

【解析】

设圆形螺母的圆心为O,连接ODOEOA,如图,根据切线的性质得到AO为∠DAB的角平分线,OD⊥AC,OE⊥AB,又因为∠CAB=60°,以此得到∠OAE=∠OAD=∠DAB=60°,根据三角函数定义求出OD的长,从而的出直径即可.

如图,设圆形螺母圆心为O,与AB相切于E,连接ODOEOA

ADAB分别是圆O的切线

AO为∠DAB的角平分线,OD⊥AC,OE⊥AB

又∵∠CAB=60°

∴∠OAE=∠OAD=∠DAB=60°

在Rt△AOD中,∠OAD=60°,AD=6cm

∴tan∠OAD=tan60°=

∴OD=

∴圆形螺母直径为.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】定义:

我们知道,四边形的一条对角线把这个四边形分成了两个三角形,如果这两个三角形相似(不全等),我们就把这条对角线叫做这个四边形的“相似对角线”.

理解:

(1)如图1,已知RtABC在正方形网格中,请你只用无刻度的直尺在网格中找到一点D,使四边形ABCD是以AC为“相似对角线”的四边形(保留画图痕迹,找出3个即可);

(2)如图2,在四边形ABCD中,∠ABC=80°,∠ADC=140°,对角线BD平分∠ABC.

求证:BD是四边形ABCD的“相似对角线”;

(3)如图3,已知FH是四边形EFCH的“相似对角线”,∠EFH=∠HFG=30°,连接EG,若EFG的面积为2,求FH的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,F是⊙O上一点,连接FOFB.C中点,过点CCDAB,垂足为DCDFB于点ECGFB,交AB的延长线于点G.

1)求证:CG是⊙O的切线;

2)若BOF=120°,且CE=4,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.

(1)求水柱所在抛物线(第一象限部分)的函数表达式;

(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?

(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校八年级学生小阳,小杰和小凡到某超市参加了社会实践活动,在活动中他们参与了某种水果的销售工作,已知该水果的进价为10/千克,下面是他们在活动结束后的对话.

小阳:如果以12/千克的价格销售,那么每天可售出300千克.

小杰:如果以15/千克的价格销售,那么每天可获取利润750元.

小凡:我通过调查验证发现每天的销售量y(千克)与销售单价x(元)之间存在一次函数关系.

(1)求y(千克)与x(元)(x>0)的函数关系式;

(2)当销售单价为何值时,该超市销售这种水果每天获得的利润达600元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示是二次函数图象的一部分,图象过点,二次函数图象对称轴为直线,给出五个结论:时,的增大而增大;方程的根为,;其中正确结论是(

A.①③④B.①②③C.②③④D.③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD的边长为1,正方形CEFG的面积为,点ECD边上,点GBC的延长线上,设以线段ADDE为邻边的矩形的面积为,且.

⑴求线段CE的长;

⑵若点HBC边的中点,连结HD,求证:.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线轴的负半轴交于点、与轴交于点,且.

(1)求的值;

(2)如果点是抛物线上一点,联结轴正半轴于点,求的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若一个等腰三角形的三边长均满足方程x2-6x+8=0,则此三角形的周长为______

查看答案和解析>>

同步练习册答案