精英家教网 > 初中数学 > 题目详情

【题目】如图所示是二次函数图象的一部分,图象过点,二次函数图象对称轴为直线,给出五个结论:时,的增大而增大;方程的根为,;其中正确结论是(

A.①③④B.①②③C.②③④D.③④⑤

【答案】A

【解析】

利用开口方向、对称轴、ab的符合“左同右异”、与x轴的交点与一元二次方程根的关系、与y轴的交点等性质判断即可.

∵此抛物线开口向下,与y轴的交点在正半轴上

a0c0

∵对称轴在y轴右侧,根据ab的符合“左同右异”

b0

c0b0,故bc0,故正确;

②将x=1代入解析式得由图可知抛物线上的点的x=1时,y0,故将x=1代入得,故错误;

③有图像可知,当时,的增大而增大,故正确;

④抛物线与x轴的两个交点关于对称轴x=1对称,故另一个交点为(-10)故方程的根为,故正确;

⑤把x=-2代入解析式得

∵当时,的增大而增大,x=-1时,y=0

∴当x=-2时,y<0,把x=-2代入解析式得,故错误.

故选A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若抛物线yx23x+cy轴的交点为(02),则下列说法正确的是(  )

A. 抛物线开口向下

B. 抛物线与x轴的交点为(﹣10),(30

C. x1时,y有最大值为0

D. 抛物线的对称轴是直线x

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=AC,以AB为直径的⊙O分别与BC、AC交于点D、E,过点DDFAC于点F.

(1)若⊙O的半径为3,CDF=15°,求阴影部分的面积;

(2)求证:DF是⊙O的切线;

(3)求证:∠EDF=DAC.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,以原点O为圆心的圆过点A(13,0),直线y=kx3k+4与O交于B、C两点,则弦BC的长的最小值为( ).

A.22 B.24 C.10 D.12

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把直尺、三角尺和圆形螺母按如图所示放置于桌面上,∠CAB=60°,若量出AD=6cm,则圆形螺母的外直径是___

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:

数学活动课上,李老师给出如下定义:如果一个三角形有一边上的中线等于这条边的一半,那么称三角形为智慧三角形.

理解:

如图,已知上两点,请在圆上找出满足条件的点,使智慧三角形(画出点的位置,保留作图痕迹);

如图,在正方形中,的中点,上一点,且,试判断是否为智慧三角形,并说明理由;

运用:

如图,在平面直角坐标系中,的半径为,点是直线上的一点,若在上存在一点,使得智慧三角形,当其面积取得最小值时,直接写出此时点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某电商平台长期销售A型商品,2017年以4800元购进该型号商品并且全部售完;2019年,这种型号的商品的进价比2017年下降了9/件,该平台用3000元购进了与2017年相同数量的该A型商品也全部售完,这两年A型商品的售价均为40/件.

12017A型商品的进价是多少元/件?

2)若该电商平台每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在解决数学问题时,我们常常从特殊入手,猜想结论,并尝试发现解决问题的策略与方法.

(问题提出)

求证:如果一个定圆的内接四边形对角线互相垂直,那么这个四边形的对边的平方和是一个定值.

(从特殊入手)

我们不妨设定圆O的半径是R,O的内接四边形ABCD中,ACBD.

请你在图①中补全特殊殊位置时的图形,并借助于所画图形探究问题的结论.

(问题解决)

已知:如图②,定圆⊙O的半径是R,四边形ABCD是⊙O的内接四边形, ACBD.

求证:

证明:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.

⑴请你补全这个输水管道的圆形截面;

⑵若这个输水管道有水部分的水面宽AB=16cm,水面最深地方的高度为4cm,求这个圆形截面的半径.

查看答案和解析>>

同步练习册答案