【题目】已知:如图,在平面直角坐标系中,是直角三角形,,点的坐标分别为,
(1)求过点的直线的函数表达式
(2)在轴上找一点,连接,使得与相似(不包括全等),并求点的坐标;
(3)在⑵的条件下,如分别是和上的动点,连接,设,问是否存在这样的使得与相似,如果存在,请求出的值;如果不存在,请说明理由.
【答案】(1) y=x+; (2) D(,0);(3)
【解析】
(1)设过点A(-3,0),B(1,3)的直线的函数表达式为y=kx+b,
由 0=k×(-3)+b ,
3=k+b
解得k=,b=,
∴直线AB的函数表达式为y=x+.
(2)如图,过点B作BD⊥AB,交x轴于点D,
在Rt△ABC和Rt△ADB中,
∵∠BAC=∠DAB,
∴Rt△ABC∽Rt△ADB,
∴D点为所求,
又tan∠ADB=tan∠ABC=,
∴CD=BC÷tan∠ADB=3÷=,
∴OD=OC+CD=,∴D(,0);
(3)这样的m存在.
在Rt△ABC中,由勾股定理得AB=5,
如图,
当PQ∥BD时,△APQ∽△ABD,则,
解得m=,
如图,
当PQ⊥AD时,△APQ∽△ADB,
则
解得m=.
科目:初中数学 来源: 题型:
【题目】长方形OABC绕顶点C(0,5)逆时针方向旋转,当旋转到CO′A′B′位置时,边O′A′交边AB于D,且A′D=2,AD=4.
(1)求BC长;
(2)求阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知矩形AOCB,AB=6cm,BC=16cm,动点P从点A出发,以3cm/s的速度向点O运动,直到点O为止;动点Q同时从点C出发,以2cm/s的速度向点B运动,与点P同时结束运动.
(1)当运动时间为2s时,P、Q两点的距离为 cm;
(2)请你计算出发多久时,点P和点Q之间的距离是10cm;
(3)如图2,以点O为坐标原点,OC所在直线为x轴,OA所在直线为y轴,1cm长为单位长度建立平面直角坐标系,连结AC,与PQ相交于点D,若双曲线过点D,问k的值是否会变化?若会变化,说明理由;若不会变化,请求出k的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(10分)如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE. 将△EDC绕点C按顺时针方向旋转,记旋转角为α.
(1)问题发现
① 当时,;② 当时,
(2)拓展探究
试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情况给出证明.
(3)问题解决
当△EDC旋转至A、D、E三点共线时,直接写出线段BD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示△ABC中,∠C=90°,∠A,∠B的平分线交于D点,DE⊥BC于点E,DF⊥AC于点F.
(1)求证:四边形CEDF为正方形;
(2)若AC=6,BC=8,求CE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一商品销售某种商品,平均每天可售出20件,每件盈利50元.为了扩大销售,增加盈利,该店采取了降价措施,在每件盈利不少于25元的前提下,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.
(1)若每件商品降价2元,则平均每天可售出______件;
(2)当每件商品降价多少元时,该商品每天的销售利润为1600元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线过点.
(1)若点也在该抛物线上,请用含的关系式表示;
(2)若该抛物线上任意不同两点、都满足:当时,;当时,;若以原点为圆心,为半径的圆与抛物线的另两个交点为、(点在点左侧),且有一个内角为,求抛物线的解析式;
(3)在(2)的条件下,若点与点关于点对称,且、、三点共线,求证:平分.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工程队在我市实施棚户区改造过程中承包了一项拆迁工程.原计划每天拆迁,因为准备工作不足,第一天少拆迁了.从第二天开始,该工程队加快了拆迁速度,第三天拆迁了.求:
该工程队第一天拆迁的面积;
若该工程队第二天、第三天每天的拆迁面积比前一天增加的百分数相同,求这个百分数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),Rt△ABC中,∠ACB=-90°,CD⊥AB,垂足为D.AF平分∠CAB,交CD于点E,交CB于点F
(1)求证:CE=CF.
(2)将图(1)中的△ADE沿AB向右平移到△A’D’E’的位置,使点E’落在BC边上,其它条件不变,如图(2)所示.试猜想:BE'与CF有怎样的数量关系?请证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com