【题目】如图,矩形中,,,点是边上一定点,且.
(1)当时,上存在点,使与相似,求的长度.
(2)对于每一个确定的的值上存在几个点使得与相似?
【答案】(1)或3;(2)当且时,有3个;当时,有2个;当时,有2个;当时,有1个.
【解析】
(1)分△AEF∽△BFC和△AEF∽△BCF两种情形,分别构建方程即可解决问题;
(2)根据题意画出图形,交点个数分类讨论即可解决问题;
解:(1)当∠AEF=∠BFC时,
要使△AEF∽△BFC,需,即,
解得AF=1或3;
当∠AEF=∠BCF时,
要使△AEF∽△BCF,需,即,
解得AF=1;
综上所述AF=1或3.
(2)如图,延长DA,作点E关于AB的对称点E′,连结CE′,交AB于点F1;
连结CE,以CE为直径作圆交AB于点F2、F3.
当m=4时,由已知条件可得DE=3,则CE=5,
即图中圆的直径为5,
可得此时图中所作圆的圆心到AB的距离为2.5,等于所作圆的半径,F2和F3重合,
即当m=4时,符合条件的F有2个,
当m>4时,图中所作圆和AB相离,此时F2和F3不存在,即此时符合条件的F只有1个,
当1<m<4且m≠3时,由所作图形可知,符合条件的F有3个,
综上所述:
当1<m<4且m≠3时,有3个;
当m=3时,有2个;
当m=4时,有2个;
当m>4时,有1个.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c的顶点坐标为(2,9),与y轴交于点A(0,5),与x轴交于点E、B.
(1)求二次函数y=ax2+bx+c的表达式;
(2)过点A作AC平行于x轴,交抛物线于点C,点P为抛物线上的一点(点P在AC上方),作PD平行于y轴交AB于点D,问当点P在何位置时,四边形APCD的面积最大?并求出最大面积;
(3)若点M在抛物线上,点N在其对称轴上,使得以A、E、N、M为顶点的四边形是平行四边形,且AE为其一边,求点M、N的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,E是矩形ABCD的边AD的中点,且BE⊥AC交于点F,则下列结论中正确的是( )
A. CF=3AF
B. △DCF是等边三角形
C. 图中与△AEF相似的三角形共有4个
D. tan∠CAD=
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,一次函数y1=kx+b的图象与反比例函数y2=的图象交于A(2,3),B(-3,n)两点.
(1)求一次函数和反比例函数的解析式;
(2)请直接写出,当x取何值时,y1>y2?
(3)若P是y轴上一点,且满足△PAB的面积是5,请直接写出OP的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数=与反比例函数=(>0)的图像在第一象限交于点A,点C在以B(7,0)为圆心,2为半径的⊙B上,已知AC长的最大值为,则该反比例函数的函数表达式为__________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AC,BD相交于点O,点E是OA的中点,连接BE并延长交AD于点F,已知S△AEF=4,则下列结论:①;②S△BCE=36;③S△ABE=12;④△AEF~△ACD,其中一定正确的是( )
A. ①②③④ B. ①④ C. ②③④ D. ①②③
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是( )
A. 该村人均耕地面积随总人口的增多而增多
B. 该村人均耕地面积y与总人口x成正比例
C. 若该村人均耕地面积为2公顷,则总人口有100人
D. 当该村总人口为50人时,人均耕地面积为1公顷
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知反比例函数的图象与反比例函数的图象关于轴对称,,是函数图象上的两点,连接,点是函数图象上的一点,连接,.
(1)求,的值;
(2)求所在直线的表达式;
(3)求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD,BE
(1)求证:CE=AD
(2)当点D在AB中点时,四边形BECD是什么特殊四边形?说明理由
(3)若D为AB的中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com