【题目】综合与探究:
将三角形纸板如图放置,点P是边AB边上一点,DF∥CE,∠PCE=∠α,∠PDF=∠β,
探究:
(1)如果α=30°,β=40°,则∠DPC=___________.
猜想:
(2)当点P在E、F两点之间运动时,∠DPC与α、β之间有何数量关系?并说明理由;
拓展:
(3)如果点P在E、F两点外侧运动时(点P与点A、B、E、F四点不重合),上述(2)中的结论是否还成立?并说明理由.
【答案】(1)70°;(2)∠DPC=α+β,证明详见解析;(3)∠DPC=β –α或∠DPC= α -β
【解析】
(1)过P点作GH∥DF,可得GH∥CE,根据“两直线平行,内错角相等” 解答即可;
(2)过P点作GH∥DF,可得GH∥CE,根据“两直线平行,内错角相等” 解答即可;
(3)过P点作PH∥DF,可得PH∥CE,分P点在直线CE上方、DF下方两种情况,根据“两直线平行,内错角相等” 解答即可;
(1)过P点作GH∥DF,
∵DF∥CE,
∴GH∥CE
∴∠PCE=∠CPG=α, ∠PDF=∠GPD=β
∵∠DPC=∠CPG+∠GPD =α+β
∵α=30°,β=40°
∴∠DPC=70°
故答案为:70°
(2)∠DPC=α+β,理由是:
如图,过P点作GH∥DF,
∵DF∥CE
∴GH∥CE
∴∠PCE=∠CPG=α, ∠PDF=∠GPD=β
∵∠DPC=∠CPG+∠GPD =α+β
(3)(2)中的结论不成立,理由是:
如图,过P作PH∥DF
(图1)
∵DF∥CE
∴PH∥CE
∴∠PCE=∠1=α
∵∠FDP=∠2=β
∵∠DPC=∠FDP-∠PCE=∠2-∠1=β -α.
如图2,过P作PH∥DF
( 图2)
∵DF∥CE
∴PH∥CE
∴∠PCE=∠1=α
∵∠FDP=∠2=β
∵∠DPC=∠PCE-∠FDP=∠1-∠2=α -β.
故(2)中的结论不成立.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A在第二象限,以A为顶点的抛物线经过原点,与x轴负半轴交于点B,对称轴为直线x=﹣1,点C在抛物线上,且位于点A、B之间(C不与A、B重合).若△ABC的周长为m,四边形AOBC的周长为 (用含m的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程有实数根.
(1)求m的值;
(2)先作的图象关于x轴的对称图形,然后将所作图形向左平移3个单位长度,再向上平移2个单位长度,写出变化后图象的解析式;
(3)在(2)的条件下,当直线y=2x+n(n≥m)与变化后的图象有公共点时,求的最大值和最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校八年级学生某科目期末评价成绩是由完成作业、单元检测、期末考试三项成绩构成的,如果期末评价成绩80分以上(含80分),则评为“优秀”.下面表中是小张和小王两位同学的成绩记录:
完成作业 | 单元测试 | 期末考试 | |
小张 | 70 | 90 | 80 |
小王 | 60 | 75 |
(1)若按三项成绩的平均分记为期末评价成绩,请计算小张的期末评价成绩;
(2)若按完成作业、单元检测、期末考试三项成绩按的权重来确定期末评价成绩.
①请计算小张的期末评价成绩为多少分?
②小王在期末(期末成绩为整数)应该最少考多少分才能达到优秀?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点C为⊙O上一点,经过C作CD⊥AB于点D,CF是⊙O的切线,过点A作AE⊥CF于E,连接AC.
(1)求证:AE=AD.
(2)若AE=3,CD=4,求AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明家在“吾悦广场”购买了一间商铺,准备承包给甲、乙两家装修公司进行店面装修,经调查:甲公司单独完成该工程的时间是乙公司的2倍,已知甲、乙两家公司共同完成该工程建设需20天;若甲公司每天所需工作费用为650元,乙公司每天所需工作费用为1200元,若从节约资金的角度考虑,则应选择哪家公司更合算?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两车从A城出发沿一条笔直公路匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.
(1)A,B两城相距 千米,乙车比甲车早到 小时;
(2)甲车出发多长时间与乙车相遇?
(3)若两车相距不超过20千米时可以通过无线电相互通话,则两车都在行驶过程中可以通过无线电通话的时间有多长?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,∠BAC=(),将线段BC绕点B逆时针旋转60°得到线段BD。
(1)如图1,直接写出∠ABD的大小(用含的式子表示);
(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;
(3)在(2)的条件下,连结DE,若∠DEC=45°,求的值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com