【题目】如图,正方形ABCD的边长为6,点E是BC的中点,连接AE与对角线BD交于点G,连接CG并延长,交AB于点F,连接DE交CF于点H,连接AH.以下结论:①CF⊥DE;②;③AD=AH;④GH=,其中正确结论的序号是__________.
【答案】①②③④
【解析】
根据全等三角形的判定定理证出和,根据全等三角形的性质证出∠CDE=∠BCF,即可证出∠CHE=90°,从而判断①;根据勾股定理求出DE,利用面积求出CH,证出,即可求出HF,从而判断②;过点A作AM⊥DH于M,证出AM垂直平分DH,即可判断③;证出,列出比例式即可判断④.
解:∵正方形ABCD的边长为6,点E是BC的中点,BD为正方形的对角线
∴
∴
∴
在和中
∴
∴
∴∠CDE=∠BCF
∵∠CDE+∠CED=90°
∴∠BCF+∠CED=90°
∴∠CHE=90°
∴CF⊥DE,故①正确;
∵,
根据勾股定理
∵
∴
∵
∴
∴
∴
∴HF=CF-CH=
∴,故②正确;
过点A作AM⊥DH于M
∵
根据勾股定理可得
∵
∴
∵CD=DA,∠DHC=∠AMD=90°
∴
∴DM=,
∴DM=,
∴AM垂直平分DH
∴AD=AH,故③正确;
∵
∴EH=DE-DH=,
∵
∴AM∥CF
∴
∴
即
解得GH=,故④正确.
综上:正确的有①②③④.
故答案为:①②③④.
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,BC=2AB=4,点E,F分别是BC,AD的中点.
(1)求证:△ABE≌△CDF;
(2)当四边形AECF为菱形时,求出该菱形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的弦,BC切⊙O于点B,AD⊥BC,垂足为D,OA是⊙O的半径,且OA=3.
(1)求证:AB平分∠OAD;
(2)若点E是优弧 上一点,且∠AEB=60°,求扇形OAB的面积.(计算结果保留π)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线,顶点为点,抛物线与轴交于、点(点在点的左侧),与轴交于点.
(1)若抛物线经过点时,求此时抛物线的解析式;
(2)直线与抛物线交于、两点,若,请求出的取值范围;
(3)如图,若直线交轴于点,请求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明根据学习函数的经验,对函数y=x+的图象与性质进行了探究.
下面是小明的探究过程,请补充完整:
(1)函数y=x+的自变量x的取值范围是 .
(2)下表列出了y与x的几组对应值,请写出m,n的值:m= ,n= ;
(3)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;
(4)结合函数的图象,请完成:
①当y=﹣时,x= .
②写出该函数的一条性质 .
③若方程x+=t有两个不相等的实数根,则t的取值范围是 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点E是正方形ABCD边CD上任意点,以DE为边作正方形DEFG,连接BF.点M是线段BF中点,射线EM与BC交于点H,连接CM.
(1)请直接写出CM和EM的数量关系和位置关系:__________;
(2)把图1中的正方形DEFG绕点D顺时针旋转90°,此时点E、G恰好分别落在线段AD、CD上,如图2所示,其他条件不变,(1)中的结论是否成立,请说明理由.
(3)若DG=,AB=4.
①把图1中的正方形DEFG绕点D顺时针旋转45°,此时点F恰好落在线段CD上,连接EM,如图3所示,其他条件不变,计算EM的长度;
②若把图1中的正方形DEFG绕点D顺时针旋转一周,请直接写出EM的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,ABOC的顶点A(0,2),点B(﹣4,0),点O为坐标原点,点C在第一象限,若将△AOB沿x轴向右运动得到△EFG(点A、O、B分别与点E、F、G对应),运动速度为每秒2个单位长度,边EF交OC于点P,边EG交OA于点Q,设运动时间为t(0<t<2)秒.
(1)在运动过程中,线段AE的长度为 (直接用含t的代数式表示);
(2)若t=1,求出四边形OPEQ的面积S;
(3)在运动过程中,是否存在四边形OPEQ为菱形?若存在,直接写出此时四边形OPEQ的面积;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一海轮位于灯塔P的西南方向,距离灯塔40了2海里的A处,它沿正东方向航行一段时间后,到达位于灯塔P的南偏东60°方向上的B处,求航程AB的值(结果保留根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,PA,PB是⊙O的切线,A,B为切点,AC是⊙O的直径.
(1)若∠BAC=25°,求∠P的度数;
(2)若∠P=60°,PA=2,求AC的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com