【题目】对于平面直角坐标系xOy中的点P,给出如下定义:记点P到x轴的距离为,到y轴的距离为,若,则称为点P的最大距离;若,则称为点P的最大距离.
例如:点P(,)到到x轴的距离为4,到y轴的距离为3,因为3 < 4,所以点P的最大距离为.
(1)①点A(2,)的最大距离为 ;
②若点B(,)的最大距离为,则的值为 ;
(2)若点C在直线上,且点C的最大距离为,求点C的坐标;
(3)若⊙O上存在点M,使点M的最大距离为,直接写出⊙O的半径r的取值范围.
【答案】(1)①5; ②;(2)C(,)或(,);(3) .
【解析】
(1)①直接根据“最大距离”的定义,其最小距离为“最大距离”;
②点B(a,2)到x轴的距离为2,且其“最大距离”为5,所以a=±5;
(2)根据点C的“最大距离”为5,可得x=±5或y=±5,代入可得结果;
(3)如图,观察图象可知:当⊙O于直线x=5,直线x=-5,直线y=5,直线y=-5有交点时,⊙O上存在点M,使点M的最大距离为5,
(1)①∵点A(2,-5)到x轴的距离为5,到y轴的距离为2,
∵2<5,
∴点A的“最大距离”为5.
②∵点B(a,2)的“最大距离”为5,
∴a=±5;
故答案为5,±5.
(2)设点C的坐标(x,y),
∵点C的“最大距离”为5,
∴x=±5或y=±5,
当x=5时,y=-7,
当x=-5时,y=3,
当y=5时,x=-7,
当y=-5时,x=3,
∴点C(-5,3)或(3,-5).
(3)如图,观察图象可知:当⊙O于直线x=5,直线x=-5,直线y=5,直线y=-5有交点时,⊙O上存在点M,使点M的最大距离为5,
∴5≤r≤5.
科目:初中数学 来源: 题型:
【题目】如图,在等腰直角三角形ABC中,∠ABC=90°,D为AC边中点,过D点作DE⊥DF,分别交边AB、BC于点E、F,连接BD.
(1)求证:△BDE≌△CDF.
(2)若AE=4,FC=3,求EF长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一棵树CD的10m高处的B点有两只猴子,它们都要到A处池塘边喝水,其中一只猴子沿树爬下走到离树20m处的池塘A处,另一只猴子爬到树顶D后直线跃入池塘的A处.如果两只猴子所经过的路程相等,试问这棵树多高?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校在“清明节”前组织七年级全体学生进行了一次“缅怀先烈,牢记历史”知识竞赛,赛后随机抽取了部分学生成绩进行统计,制作如下频数分布表和频数分布直方图,请根据图中提供的信息,解答下列问题:
分数段表示分数 | 频数 | 频率 |
4 | ||
8 | b | |
a | ||
10 | ||
6 |
表中______,______,并补全直方图;
若用扇形统计图描述次成绩统计图分别情况,则分数段对应扇形的圆心角度数是______;
若该校七年级共900名学生,请估计该年级分数在的学生有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图1,将长方形ABCD折叠,使BC落在对角线BD上,折痕为BE,点C落在点C′处,若∠ADB=48°,则∠DBE的度数为_______.
(2)小明手中有一张长方形纸片ABCD,AB=12,AD=27.
(画一画)
如图2,点E在这张长方形纸片的边AD上,将纸片折叠,使AB落在CE所在直线上,折痕设为MN(点M,N分别在边AD,BC上),利用直尺和圆规画出折痕MN(不写作法,保留作图痕迹,).
(算一算)
如图3:点F在这张长方形纸片的边BC上,将纸片折叠,使FB落在线段FD上,折痕为GF,点A、B分别落在点E、H处,若△DCF的周长等于48,求DH和AG的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.
(1)求证:△ABD是等腰三角形;
(2)若∠A=40°,求∠DBC的度数;
(3)若AE=6,△CBD的周长为20,求△ABC的周长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com