精英家教网 > 初中数学 > 题目详情

【题目】如图,已知直线AB∥CD,FH平分∠EFD,FG⊥FH,∠AEF=62°,则∠GFC=_____度.

【答案】59

【解析】

先根据平行线的性质得出∠EFC与∠EFD的度数,再根据FH平分∠EFD得出∠EFH的度数,再根据FGFH可得出∠GFE的度数,根据∠GFC=∠CFE﹣∠GFE即可得出结论.

ABCD,∠AEF62°

∴∠EFD=∠AEF62°,∠CFE180°﹣∠AEF180°62°118°

FH平分∠EFD

∴∠EFHEFD×62°31°

又∵FGFH

∴∠GFE90°﹣∠EFH90°31°59°

∴∠GFC=∠CFE﹣∠GFE118°59°59°

故答案为:59

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】贵阳市某消防支队在一幢居民楼前进行消防演习,如图所示,消防官兵利用云梯成功救出在C处的求救者后,发现在C处正上方17米的B处又有一名求救者,消防官兵立刻升高云梯将其救出,已知点A与居民楼的水平距离是15米,且在A点测得第一次施救时云梯与水平线的夹角∠CAD=60°,求第二次施救时云梯与水平线的夹角∠BAD的度数(结果精确到1°).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB=AD,BD平分∠ABC,AC⊥BD,垂足为点O.

(1)求证:四边形ABCD是菱形;
(2)若CD=3,BD=2 ,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC=45°CD⊥ABBE⊥AC,垂足分别为DEFBC中点,BEDFDC分别交于点GH∠ABE=∠CBE

1)线段BHAC相等吗?若相等给予证明,若不相等请说明理由;

2)求证:BG2﹣GE2=EA2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,BC=a,AC=b,AB=c,设c为最长边,当a2+b2=c2时,ABC是直角三角形;当a2+b2≠c2时,利用代数式a2+b2和c2的大小关系,探究ABC的形状(按角分类).

(1)当ABC三边分别为6、8、9时,ABC为   三角形;当ABC三边分别为6、8、11时,ABC为   三角形.

(2)猜想,当a2+b2   c2时,ABC为锐角三角形;当a2+b2   c2时,ABC为钝角三角形.

(3)判断当a=2,b=4时,ABC的形状,并求出对应的c的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC中,CDAB边上的高,AC=4,BC=3,DB=

求:(1)求AD的长;

(2)△ABC是直角三角形吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC(网格中每个小正方形的边长均为1).

1)三个顶点坐标分别为:A   B   C   

2)求三角形ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在全民读书月活动中,某校随机调查了40名同学,本学期计划购买课外书的费用情况,并将结果绘制成如图所示的统计图.根据相关信息,解答下列问题,直接写出结果.

(1)这次调查获取的样本数据的众数是   

(2)这次调查获取的样本数据的中位数是   

(3)若该校共有1200名学生,根据样本数据,估计本学期计划购买课外书花费50元的学生有   人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下面的证明

如图FG//CD,∠1=∠3,∠B=50°,求BDE的度数.

:∵FG//CD (已知)

∴∠2=_________(____________________________)

又∵∠1=∠3,

∴∠3=∠2(等量代换)

BC//__________(_____________________________)

∴∠B+________=180°(______________________________)

又∵∠B=50°

∴∠BDE=________________.

查看答案和解析>>

同步练习册答案