【题目】关于x的一元二次方程(m+1)x2+2(m+1)x+2=0有两个相等的实数根,抛物线y=﹣x2+(m+1)x+3与x轴交于A、B两点(A在B左侧),与y轴相交于点C,抛物线的顶点为D.
(1)求抛物线的解析式.
(2)如图1,设抛物线的对轴交x轴于点E,在抛物线的对称轴上是否存在点P,使P点到x轴的距离等于P点到直线BD的距离?若存在,求出点P的坐标,若不存在,请说明理由.
(3)如图2,作CF⊥DE于F,M为射线EA上一动点.如果在线段EF上恰好存在两个点N满足△CFN与△NEM相似,求M点的坐标.
【答案】(1)y=﹣x2+2x+3.(2)当点P坐标为(2,﹣1)或(2,﹣﹣1)时,P点到x轴的距离等于P点到直线BD的距离.(3)
【解析】
(1)利用根的判别式列式求解即可.(2)由题意可知,点P在∠DBE及其外角的角平分线上,则角平分线与对称轴的交点,即为点P的位置,利用勾股定理求解即可.(3)当以CM为直径的⊙K与EF相切时,恰好存在两个点N,使得△MNE和△CFN相似,由此确定M的位置,设EM=a,连接KN,则KN是梯形CFEM的中位线,则KN=,CM=1+a,在Rt△CMO中,利用勾股定理列方程求解即可.
解:(1)∵一元二次方程(m+1)x2+2(m+1)x+2=0有两个相等的实数根,
∴△=0且m+1≠0,
∴4(m+1)2﹣4(m+1)×2=0,
解得m=±1,
∵m≠﹣1,
∴m=1,
∴抛物线解析式为y=﹣x2+2x+3.
(2)存在.如图1中,
①当P在x轴上方时,作PM⊥BD,设PM=PE=m,
由题意可知A(﹣1,0),B(3,0),D(1,4),
∴DE=4,BE=2,BD===2,
在Rt△PDM中,∵PD2=DM2=PM2,
∴(4﹣m)2=(2﹣2)2+m2,
解得m=﹣1,
∴此时点P坐标(2,﹣1).
②当P′在x轴下方时,作P′N⊥BD于N.设P′N=P′E=m,
在Rt△DP′N中,∵P′D2=DN2+P′N2,
∴(4+m)2=(2+2)2+m2,
解得m=+1,
∴此时点P′坐标(2,﹣﹣1).
综上所述,当点P坐标为(2,﹣1)或(2,﹣﹣1)时,P点到x轴的距离等于P点到直线BD的距离.
(3)如图2中,当以CM为直径的⊙K与EF相切时,恰好存在两个点N,使得△MNE和△CFN相似.
①设切点为N,则∠CNM=90°,
∵∠CFN=∠MEN=90°,
∴∠MNE+∠CNF=90°,∠CNF+∠NCF=90°,
∴∠MNE=∠NCF,
∴△MNE∽△NCF.
②作C关于直线DE的对称点C′,连接MC′交DE于N′,
∵∠CN′F=∠C′N′F=∠MN′E,∠CFN′=∠MEN′=90°,
∴△N′ME∽△N′CF.
∴当以CM为直径的⊙K与EF相切时,恰好存在两个点N,使得△MNE和△CFN相似,
设EM=a,连接KN,则KN是梯形CFEM的中位线,
∴KN=,CM=1+a,
在Rt△CMO中,∵CM2=CO2+OM2,
∴(1+a)2=(a﹣1)2=32,
解得a=,
∴OM=EM﹣OE=﹣1=,
∴点M坐标为(﹣,0).
科目:初中数学 来源: 题型:
【题目】某数学兴趣小组对函数y=的图象和性质进行探究,他们用描点法画此函数图象时,先列表如下
(1)请补全此表;
(2)根据表中数据,在如图坐标系中画出该函数的图象;
(3)请写出此函数图象不同方面的三个性质;
(4)若点(m,y1),(2,y2)都在此函数图象上,且y1≤y2,求m的取值范围
x | …… | _____ | ____ | _____ | _____ | 0 | 1 | 2 | 3 | 4 | …… |
y | …… | _____ | ____ | _____ | _____ | 4 | 2 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在锐角△ABC中,AB=4,BC=5,∠ACB=45°,将△ABC绕点B按逆时针方向旋转,得到△A1BC1.
(1)如图1,当点C1在线段CA的延长线上时,求∠CC1A1的度数;
(2)如图2,连接AA1,CC1.若△ABA1的面积为4,求△CBC1的面积;
(3)如图3,点E为线段AB中点,点P是线段AC上的动点,在△ABC绕点B按逆时针方向旋转过程中,点P的对应点是点P1,求线段EP1长度的最大值与最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为增强学生的身体素质,教育行政部门规定学生每天参加户外活动的平均时间不少于1小时.为了解学生参加户外活动的情况,对部分学生参加户外活动的时间进行抽样调查,并将调查结果绘制作成如下两幅不完整的统计图,请你根据图中提供的信息解答下列问题:
(1)在这次调查中共调查了多少名学生?
(2)补充频数分布直方图;
(3)求表示户外活动时间 1小时的扇形圆心角的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=与x轴y轴分别交于A、C两点,以AC为对角线作第一个矩形ABCO,对角线交点为A1,再以CA1为对角线作第二个矩形A1B1CO1,对角线交点为A2,同法作第三个矩形A2B2CO2对角线交点为A3,…以此类推,则第2019个矩形对角线交点A2019的坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边△ABC中,BM是ABC内部的一条射线,且,点A关于BM的对称点为D,连接AD,BD,CD,其中AD、CD的延长线分别交射线BM于点E,P.
(1)依题意补全图形;
(2)若ABM ,求BDC 的大小(用含的式子表示);
(3)用等式表示线段PB,PC与PE之间的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题再现:
数形结合是解决数学问题的一种重要的思想方法,借助这种方法可将抽象的数学知识变得直观起来并且具有可操作性,从而可以帮助我们快速解题.初中数学里的一些代数公式,很多都可以通过表示几何图形面积的方法进行直观推导和解释.例如:利用图形的几何意义推证完全平方公式.将一个边长为a的正方形的边长增加b,形成两个矩形和两个正方形,如图1,这个图形的面积可以表示成:(a+b)2或a2+2ab+b2∴(a+b)2=a2+2ab+b2
这就验证了两数和的完全平方公式.
问题提出:
如何利用图形几何意义的方法推证:13+23=32 如图2,A表示1个1×1的正方形,即:1×1×1=13,B表示1个2×2的正方形,C与D恰好可以拼成1个2×2的正方形,因此:B、C、D就可以表示2个2×2的正方形,即:2×2×2=23,而A、B、C、D恰好可以拼成一个(1+2)×(1+2)的大正方形,由此可得:13+23=(1+2)2=32
尝试解决:
请你类比上述推导过程,利用图形几何意义方法推证:13+23+33= (要求自己构造图形并写出推证过程)
类比归纳:
请用上面的表示几何图形面积的方法探究:13+23+33+…+n3= (要求直接写出结论,不必写出解题过程)
实际应用:
图3是由棱长为1的小正方体搭成的大正方体,图中大小正方体一共有多少个?为了正确数出大小正方体的总个数,我们可以分类统计,即分别数出棱长是1,2,3和4的正方体的个数,再求总和.
例如:棱长是1的正方体有:4×4×4=43个,棱长是2的正方体有:3×3×3=33个,棱长是3的正方体有:2×2×2=23个,棱长是4的正方体有:1×1×l=13个,然后利用(3)类比归纳的结论,可得: = 图4是由棱长为1的小正方体成的大正方体,图中大小正方体一共有 个.
逆向应用:
如果由棱长为1的小正方体搭成的大正方体中,通过上面的方式数出的大小正方体一共有44100个,那么棱长为1的小正方体一共有 个.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com