【题目】某数学兴趣小组对函数y=的图象和性质进行探究,他们用描点法画此函数图象时,先列表如下
(1)请补全此表;
(2)根据表中数据,在如图坐标系中画出该函数的图象;
(3)请写出此函数图象不同方面的三个性质;
(4)若点(m,y1),(2,y2)都在此函数图象上,且y1≤y2,求m的取值范围
x | …… | _____ | ____ | _____ | _____ | 0 | 1 | 2 | 3 | 4 | …… |
y | …… | _____ | ____ | _____ | _____ | 4 | 2 |
【答案】(1)见解析;(2)见解析;(3)①函数值y>0;②当x>0时,y随x的增大而减小;当x<0时,y随x的增大而增大;③图象的对称轴是y轴;(4)x<﹣2或x>2.
【解析】
(1)把x=﹣1、﹣2、﹣3、﹣4分别代入y=中计算即可得到对应的函数值;
(2)利用描点法画出函数图象;
(3)结合图象写出三个性质即可;
(4)根据图象即可求得.
解:(1)如下表:
x | …… | ﹣4 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 4 | …… |
y | …… | 2 | 4 | 2 |
(2)如图所示:
(3)①函数值y>0,
②当x>0时,y随x的增大而减小;当x<0时,y随x的增大而增大;
③图象的对称轴是y轴;
(4)由图象可知,若点(m,y1),(2,y2)都在此函数图象上,且y1≤y2,m的取值范围是x<﹣2或x>2.
科目:初中数学 来源: 题型:
【题目】(2014山东淄博)如图,四边形ABCD中,AC⊥BD交BD于点E,点F,M分别是AB,BC的中点,BN平分∠ABE交AM于点N,AB=AC=BD,连接MF,NF.
(1)判断△BMN的形状,并证明你的结论;
(2)判断△MFN与△BDC之间的关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在推进嘉兴市城乡生活垃圾分类的行动中,某社区为了了解居民掌握垃圾分类知识的 情况进行调查.其中A、B 两小区分别有 500 名居民参加了测试,社区从中各随机 抽取50 名居民成绩进行整理得到部分信息:
(信息一)A 小区 50 名居民成绩的频数直方图如下(每一组含前一个边界值,不含后一个边界值):
(信息二)上图中,从左往右第四组的成绩如下
(信息三)A、B 两小区各 50 名居民成绩的平均数、中位数、众数、优秀率(80 分及以上为优秀)、方差等数据如下(部分空缺):
根据以上信息,回答下列问题:
(1)求A 小区 50 名居民成绩的中位数.
(2)请估计A 小区 500 名居民成绩能超过平均数的人数.
(3)请尽量从多个角度,选择合适的统计量分析 A,B 两小区参加测试的居民掌握垃圾分类知识的情况.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,AB:BC=3:5,点E是对角线BD上一动点(不与点B,D重合),将矩形沿过点E的直线MN折叠,使得点A,B的对应点G,F分别在直线AD与BC上,当△DEF为直角三角形时,CN:BN的值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=x2+bx+c的图象经过坐标原点O和点A(7,0),直线AB交y轴于点B(0,﹣7),动点C(x,y)在直线AB上,且1<x<7,过点C作x轴的垂线交抛物线于点D,则CD的最值情况是( )
A.有最小值9B.有最大值9C.有最小值8D.有最大值8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2014湖南怀化)两个城镇A、B与两条公路ME、MF位置如图所示,其中ME是东西方向的公路.现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离相等,到两条公路ME、MF的距离也必须相等,且在∠FME的内部.
(1)那么点C应选在何处?请在图中,用尺规作图找出符合条件的点C(不写已知、求作、作法,只保留作图痕迹);
(2)设AB的垂直平分线交ME于点N,且km,在M处测得点C位于点M的北偏东60°方向,在N处测得点C位于点N的北偏西45°方向,求点C到公路ME的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与
轴,
轴分别交于
,
两点,边长为2的正方形
的边
,
分别在
轴,
轴上,点
在第一象限,正方形
绕点
逆时针旋转,
的对应边
恰好落在直线
上,则
的值为( )
A. B.
C. 5D. 6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在⊙O的内接三角形ABC中,,
,过C作AB的垂线l交⊙O于另一点D,垂足为E.设P是
上异于A,C的一个动点,射线AP交l于点F,连接PC与PD,PD交AB于点G.
(1)求证:;
(2)若,
,求PD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于x的一元二次方程(m+1)x2+2(m+1)x+2=0有两个相等的实数根,抛物线y=﹣x2+(m+1)x+3与x轴交于A、B两点(A在B左侧),与y轴相交于点C,抛物线的顶点为D.
(1)求抛物线的解析式.
(2)如图1,设抛物线的对轴交x轴于点E,在抛物线的对称轴上是否存在点P,使P点到x轴的距离等于P点到直线BD的距离?若存在,求出点P的坐标,若不存在,请说明理由.
(3)如图2,作CF⊥DE于F,M为射线EA上一动点.如果在线段EF上恰好存在两个点N满足△CFN与△NEM相似,求M点的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com