精英家教网 > 初中数学 > 题目详情

【题目】已知:直线为图形内一点,连接

1)如图①,写出之间的等量关系,并证明你的结论;

2)如图②,请直接写出之间的关系式;

3)你还能就本题作出什么新的猜想?请画图并写出你的结论(不必证明).

【答案】1,见解析;(2;(3,见解析

【解析】

1)如图①,延长于点,根据两直线平行,内错角相等可得,再根据三角形外角的性质即可得解;

2)如图②中,过PPGAB,利用平行线的性质即可解决问题;

(3) 如图③,在利用外角的性质以及两直线平行,内错角相等的性质,即可得出

证明:(1)如图①,延长于点

中则有

(三角形一个外角等于和它不相邻的两个内角的和)

(两直线平行,内错角相等)

(图①) (图②)

2)如图②中,过PPGAB

AB//CD

PG//CD

AB//PG

∴∠ABP+BPG=180°

PG//CD

∴∠GPD+PDC=180°

∴∠ABP+BPG +GPD+PDC =360°

故答案为:

3)如图③.证明如下:

(图③)

中则有.(三角形一个外角等于和它不相邻的两个内角的和)

(两直线平行,内错角相等)

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线经过点A(1,0)B(3,0)C(0,3)三点。

(1)求抛物线的解析式。

(2)M是线段BC上的点(不与BC重合),过MMNy轴交抛物线于N若点M的横坐标为m,请用m的代数式表示MN的长。

(3)在(2)的条件下,连接NBNC,是否存在m,使BNC的面积最大?若存在,求m的值;若不存在,说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=﹣x2+bx+c(b,c均是常数)经过点O(0,0),A(4,4),与x轴的另一交点为点B,且抛物线对称轴与线段OA交于点P.

(1)求该抛物线的解析式和顶点坐标;

(2)过点Px轴的平行线l,若点Q是直线上的动点,连接QB.

①若点O关于直线QB的对称点为点C,当点C恰好在直线l上时,求点Q的坐标;

②若点O关于直线QB的对称点为点D,当线段AD的长最短时,求点Q的坐标(直接写出答案即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC 中,∠ABC=90°,∠C=30°,AC 的垂直平分线交 BC 于点 D,交AC 于点 E.

(1)判断 BE △DCE 的外接圆⊙O 的位置关系,并说明理由;

(2) BE=,BD=1,求△DCE 的外接圆⊙O 的直径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形OABC的边OA在x轴正半轴上,边OC在y轴正半轴上,B点的坐标为(1,3).矩形O'A'BC'是矩形OABC绕B点逆时针旋转得到的.O'点恰好在x轴的正半轴上, O'C'交AB于点D.

(1)求点O'的坐标,并判断△O'DB的形状(要说明理由)

(2)求边C'O'所在直线的解析式.

(3)延长BA到M使AM=1,在(2)中求得的直线上是否存在点P,使得ΔPOM是以线段OM为直角边的直角三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向海里的C处,为了防止某国还巡警干扰,就请求我A处的鱼监船前往C处护航,已知C位于A处的北偏东45°方向上,A位于B的北偏西30°的方向上,求AC之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知RtABC中,∠C=90°,AC=8cm,AB=12cm,点PB出发沿BA方向向点A匀速运动,同时点QA出发沿AC方向向点C匀速运动,速度均为1cm/s.以AQ、PQ为边作AQPD,连接DQ,交AB于点E.设运动的时间为t(单位:s)(0≤t≤6).解答下列问题:

(1)当t为何值时,AQPD为矩形.

(2)当t为何值时,AQPD为菱形.

(3)是否存在某一时刻t,使四边形AQPD的面积等于四边形PQCB的面积,若存在,请求出t值,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC内接于OBCO的直径,点DBC延长线上的一点,AD=AB,且∠ACB=2∠D,CD=2(如图1)

(1)求证:ADO的切线;

(2)AD=

(3)若点EO上的一点,AEBC交于点F,且点E等分半圆BC时(如图2),CF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图, 为等边三形内的一点, ,将线段以点为旋转中心逆时针旋转60°得到线段,下列结论:①点与点的距离为5;②;③可以由绕点进时针旋转60°得到;④点的距离为3;⑤,其中正确的有( )

A.2B.3C.4D.5

查看答案和解析>>

同步练习册答案