精英家教网 > 初中数学 > 题目详情

【题目】ABC内接于OBCO的直径,点DBC延长线上的一点,AD=AB,且∠ACB=2∠D,CD=2(如图1)

(1)求证:ADO的切线;

(2)AD=

(3)若点EO上的一点,AEBC交于点F,且点E等分半圆BC时(如图2),CF的长.

【答案】(1)详见解析;(2);(3)CF=.

【解析】

(1)连接OA,通过证明ADOA即可得出结论;

(2)易得OAC是等边三角形,可得CA=OC=OA=CD=2,由勾股定理得AD的长;

(3)FFHACH为垂足,设CH=x,在RtCFH中求得FH=RtAFH中,求得AH =AH+GH=2求得x的值,从而得出结论.

1)连结OA,

AD=AB

∴∠ B=D

∵∠ACB=2D

∴∠ACB=2B

BC是⊙O的直径,

∴∠BAC=90°

RtABC, B+ACB=90°,即∠B=30°,D=30°,BAD=120°

又∵OA=OB,

∴∠OAB=B=30°,

∴∠OAD=90°

ADOA

AD是⊙O的切线

(2)OA=OC, ACB =2D =60,OAC是等边三角形,

AC=OC

OAC =60,CAD =30=D,

CA=OC=OA=CD=2

RtOAD,

(3)过FFHACH为垂足

CH=x,在RtCFH中,∠ACF =60,FH=

RtAFH中,∠FAH =45,

AH=FH=

AC=CD=2,

CF=.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx(a≠0)过点A(,﹣3)和点B(3,0).过点A作直线AC∥x轴,交y轴于点C.

(1)求抛物线的解析式;

(2)在抛物线上取一点P,过点P作直线AC的垂线,垂足为D.连接OA,使得以A,D,P为顶点的三角形与△AOC相似,求出对应点P的坐标;

(3)抛物线上是否存在点Q,使得SAOC=SAOQ?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:直线为图形内一点,连接

1)如图①,写出之间的等量关系,并证明你的结论;

2)如图②,请直接写出之间的关系式;

3)你还能就本题作出什么新的猜想?请画图并写出你的结论(不必证明).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD的对角线交于点,顺次联结ABCD各边中点得到的一个新的四边形,如果添加下列四个条件中的一个条件:①;②;③;④,可以使这个新的四边形成为矩形,那么这样的条件个数是()

A. 1个;B. 2个;

C. 3个;D. 4个.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一次数学兴趣小组活动中,小明利用同弧所对的圆周角及圆心角的性质探索了一些问题,下面请你和小明一起进入探索之旅.

(1)如图1,ABC中,∠A=30°,BC=2,则ABC的外接圆的半径为

(2)如图2,在矩形ABCD中,请利用以上操作所获得的经验,在矩形ABCD内部用直尺与圆规作出一点P,点P满足;∠BPC=BEC,且PB=PC;(要求:用直尺与圆规作出点P,保留作图痕迹.)

(3)如图3,在平面直角坐标系的第一象限内有一点B,坐标为(2,m),过点BABy轴,BCx轴,垂足分别为A、C,若点P在线段AB上滑动(点P可以与点A、B重合),发现使得∠OPC=45°的位置有两个,则m的取值范围为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,一次函数y=kx+b与反比例函数y=的图象交于A(2,4),B(﹣4,n)两点.

(1)分别求出一次函数与反比例函数的表达式;

(2)过点BBCx轴,垂足为点C,连接AC,求ACB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果

下面有三个推断:

①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47

②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5

③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45

其中合理的是

A. B. C. ①② D. ①③

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x的方程x2axa-2=0.

(1)求证:不论a取何实数,该方程都有两个不相等的实数根;

(2)若该方程的一个根为1,求a的值及该方程的另一根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了响应绿水青山就是金山银山的号召,建设生态文明,某工厂自20191月开始限产并进行治污改造,其月利润(万元)与月份之间的变化如图所示,治污完成前是反比例函数图象的一部分,治污完成后是一次函数图象的部分,下列选项错误的是(

A.4月份的利润为万元

B.污改造完成后每月利润比前一个月增加万元

C.治污改造完成前后共有个月的利润低于万元

D.9月份该厂利润达到万元

查看答案和解析>>

同步练习册答案