【题目】如图,在四边形ABCD中,AD∥BC.
(1)求作直线EF使得EF交AD于点E,交BC于点F且使得EA=EC,FA=FC(尺规作图,保留作图痕迹,不写作法);
(2)连接AF、CE,判断四边形AFCE的形状,并说明理由.
科目:初中数学 来源: 题型:
【题目】如图,抛物线与直线分别相交于,两点,且此抛物线与轴的一个交点为,连接,.已知,.
(1)求抛物线的解析式;
(2)在抛物线对称轴上找一点,使的值最大,并求出这个最大值;
(3)点为轴右侧抛物线上一动点,连接,过点作交轴于点,问:是否存在点使得以,,为顶点的三角形与相似?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,Rt△ABC中,∠ACB=90°,AD平分∠BAC交BC于点D,点O为AB上一点,以O为圆心,AO为半径的圆经过点D.
(1)求证:BC与⊙O相切;
(2)若BD=AD=,求阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台.
(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)
(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?
(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】年新冠肺炎疫情发生以来,每天测体温成为一种制度,手持红外测温枪成为紧俏商品.某经销店承诺对所有商品明码标价,绝不哄抬物价.如下表所示是该店甲、乙两种手持红外测温枪的进价和售价:
商品 价格 | 甲 | 乙 |
进件(元个) | ||
售价(元个) |
该店有一批用元购进的甲、乙两种手持红外测温枪库存,预计全部销售后可获毛利润共元.[毛利润(售价进价)销售量]
(1)该店库存的甲、乙两种手持红外测温枪分别为多少个?
(2)根据销售情况,该店计划增加甲种手持红外测温枪的购进量,减少乙种手持红外测温枪的购进量.已知甲种手持红外测温枪增加的数量是乙种手持红外测温枪减少的数量的倍,进货价不变,而且用于购进这两种手持红外测温枪的总资金不超过元,则该店怎样进货,可使全部销售后获得的毛利润最大?并求出最大毛利润.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,O为□ABCD的对称中心,点A的坐标为(-2,-2),AB=5,AB//x轴,反比例函数y=的图象经过点D,将□ABCD沿y轴向下平移,使点C的对应点C′落在反比例函数的图象上,则平移过程中线段AC扫过的面积为( )
A.10B.18C.20D.24
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2+mx(m<0)交x轴于O,A两点,顶点为点B.
(1)求△AOB的面积(用含m的代数式表示);
(2)直线y=kx+b(k>0)过点B,且与抛物线交于另一点D(点D与点A不重合),交y轴于点C.过点C作CE∥AB交x轴于点E.
(ⅰ) 若∠OBA=90°,2<<3,求k的取值范围;
(ⅱ) 求证:DE∥y轴.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为维护我国海洋权益,强化管辖海域的实际控制,国家海洋局决定实施常态化的海洋维权巡航执法,开展多种形式的海洋维权行动:外国船只除特许外,不得进入我国海洋100海里以内的区域.如图,设A、B是我们的观察站,A和B之间的距离为160海里,海岸线是过A、B的一条直线.一外国船只在C点,在A点测得∠BAC=45°,同时在B点测得∠ABC=60°,问此时是否要向外国船只发出警告,令其退出我国海域.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在菱形ABCD中,∠ADE、∠CDF分别交BC、AB于点E、F,DF交对角线AC于点M,且∠ADE=∠CDF.
(1)求证:CE=AF;
(2)连接ME,若=,AF=2,求的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com