精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).

(1)请画出△ABC绕O点逆时针旋转90°得到△A1B1C1,请画出△A1B1C1

(2)在x轴上求作一点P,使△PA1C1的周长最小,并直接写出P的坐标.

【答案】(1)见解析(2)(2,0)

【解析】

(1)根据旋转的性质,确定A、B、C的旋转90°的旋转点,连接即可;

(2)AB的长是不变的,要使△PAB的周长最小,即要求PA+PB最小,转为了已知直线与直线一侧的两点,在直线上找一个点,使这点到已知两点的线段之和最小,方法是作A、B两点中的某点关于该直线的对称点,然后连接对称点与另一点.

(1)如图所示,△A1B1C1即为所求的三角形

(2)如图所示,点P(2,0)即为所求的点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线yx+2与双曲线相交于点Am,3).

(1)求反比例函数的表达式;

(2)画出直线和双曲线的示意图;

(3)若P是坐标轴上一点,当OAPA时.直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知矩形OABC,点P在边OA上(不与端点重合),点Q在边CO上(不与端点重合).

(1)如图(1),若∠BPQ=90°,且△OPQ与△PAB和△QPB相似,请写出表示这三个三角形相似的式子,并探究此时线段OQQBBA之间的数量关系.

(2)若∠PQB=90°,且△OPQ与△PAB、△QPB都相似,如图(2),请重新写出表示这三个三角形相似的式子,并证明ABOA=2:3.

(3)在(1)中,若OA=8OC=8,OPCQ.以矩形OABC的两边OAOC所在的直线分别为x轴和y轴,建立平面直角坐标系,如图(3),若某抛物线顶点为P,点B在抛物线上.

①求此抛物线的解析式.

②过线段BP上一动点M(点M与点PB不重合),作y轴的平行线交抛物线于点N,若记点M的横坐标为m,试求线段MN的长Lm之间的函数关系式,画出该函数的示意图,并指出m取何值时,L有最大值,最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在x轴的正半轴上依次截取OA1A1A2A2A3A3A4A4A5,过点A1A2A3A4A5分别作x轴的垂线与反比例函数yx≠0)的图象相交于点P1P2P3P4P5,得直角三角形OP1A1A1P2A2A2P3A3A3P4A4A4P5A5,并设其面积分别为S1S2S3S4S5,则S10_____.(n≥1的整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O为线段AB的中点,AB=4cm,P1、P2、P3、P4到点O的距离分别是1cm、2cm、2.8cm、1.7cm,下列四点中能与A、B构成直角三角形的顶点是(  )

A. P1 B. P2 C. P3 D. P4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形OABC在平面直角坐标系中,若x2﹣2x+2=0的两根是x1、x2,且OC=x1+x2,OA=x1x2

(1)求B点的坐标.

(2)把△ABC沿AC对折,点B落在点B′处,线段AB′与x轴交于点D,求直线BD的解析式.

(3)在平面上是否存在点P,使D、C、B、P四点形成的四边形为平形四边形?若存在,请直接写出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,弦CDAB,垂足为H,连结AC,过弧BD上一点EEGACCD的延长线于点G,连结AECD于点F,且EGFG,连结CE

1)求证:ECF∽△GCE

2)求证:EG是⊙O的切线;

3)延长ABGE的延长线于点M,若tanGAH3,求EM的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,经过原点O的抛物线(a0)与x轴交于另一点A(,0),在第一象限内与直线y=x交于点B(2,t).

(1)求这条抛物线的表达式;

(2)在第四象限内的抛物线上有一点C,满足以B,O,C为顶点的三角形的面积为2,求点C的坐标;

(3)如图2,若点M在这条抛物线上,且MBO=ABO,在(2)的条件下,是否存在点P,使得POC∽△MOB?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O的半径是2,直线O相交于A、B两点,M、N是O上的两个动点,且在直线的异侧,若AMB=45°,则四边形MANB面积的最大值是

A. B C D

查看答案和解析>>

同步练习册答案