精英家教网 > 初中数学 > 题目详情

【题目】如图,在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.
(1)求证:CE=CF;
(2)若点G在AD上,且∠GCE=45°,则GE=BE+GD成立吗?为什么?

【答案】
(1)证明:在正方形ABCD中,

∴△CBE≌△CDF(SAS).

∴CE=CF


(2)解:GE=BE+GD成立.

理由是:∵由(1)得:△CBE≌△CDF,

∴∠BCE=∠DCF,

∴∠BCE+∠ECD=∠DCF+∠ECD,即∠ECF=∠BCD=90°,

又∵∠GCE=45°,∴∠GCF=∠GCE=45°.

∴△ECG≌△FCG(SAS).

∴GE=GF.

∴GE=DF+GD=BE+GD.


【解析】(1)由DF=BE,四边形ABCD为正方形可证△CEB≌△CFD,从而证出CE=CF.(2)由(1)得,CE=CF,∠BCE+∠ECD=∠DCF+∠ECD即∠ECF=∠BCD=90°又∠GCE=45°所以可得∠GCE=∠GCF,故可证得△ECG≌△FCG,即EG=FG=GD+DF.又因为DF=BE,所以可证出GE=BE+GD成立.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D、E两点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若a=2,b=﹣1,则a+2b+3的值为(
A.﹣1
B.3
C.6
D.5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】初三年某班共50名学生参加体育测试,全班学生成绩合格率为94%,则不合格的人数有___________人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338600000亿次,数学338600000用科学记数法可表示为(
A.3.386×109
B.0.3386×109
C.33.86×107
D.3.386×108

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了加强对校内外安全监控,创建荔湾平安校园,某学校计划增加15台监控摄像设备,现有甲、乙两种型号的设备,其中每台价格,有效监控半径如表所示,经调查,购买1台甲型设备比购买1台乙型设备多150元,购买2台甲型设备比购买3台乙型设备少400元.

甲型

乙型

价格(元/台)

a

b

有效半径(米/台)

150

100


(1)求a、b的值.
(2)若购买该批设备的资金不超过11000元,且两种型号的设备均要至少买一台,学校有哪几种购买方案?
(3)在(2)问的条件下,若要求监控半径覆盖范围不低于1600米,为了节约资金,请你设计一种最省钱的购买方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线与坐标轴分别交于点A(0,8)、B(8,0)和点E,动点C从原点O开始沿OA方向以每秒1个单位长度移动,动点D从点B开始沿BO方向以每秒1个单位长度移动,动点C、D同时出发,当动点D到达原点O时,点C、D停止运动.

(1)直接写出抛物线的解析式:

(2)求△CED的面积S与D点运动时间t的函数解析式;当t为何值时,△CED的面积最大?最大面积是多少?

(3)当△CED的面积最大时,在抛物线上是否存在点P(点E除外),使△PCD的面积等于△CED的最大面积?若存在,求出P点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某陶瓷商,为了促销决定卖一只茶壶,赠一只茶杯。某人共付款162元,买得茶壶茶杯共36只,已知每只茶壶15元,每只茶杯3元,问其中茶壶、茶杯各多少只?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ACB和△ADE均为等边三角形,点C、E、D在同一直线上,连接BD. 求证:CE=BD.

查看答案和解析>>

同步练习册答案