【题目】如图,在四边形ABCD中,AD∥BC,DE⊥BC,垂足为点E,连接AC交DE于点F,点G为AF的中点,∠ACD=2∠ACB.若DG=5,EC=1,则DE的长为( )
A. 2B. 4C. 2D.
【答案】C
【解析】
由AD与BC平行,且DE垂直于BC,得到DE垂直于AD,在直角三角形AED中,利用斜边上的中线等于斜边的一半,得到DG=GF,作GH⊥DE,利用三线合一得到GH为角平分线,再由∠ACD=2∠ACB,等量代换得到∠DGF=∠ACD,等角对等边得到DG=DC=5,在直角三角形CDE中,利用勾股定理求出DE的长即可.
解:∵AD∥BC,DE⊥BC,
∴∠ADF=∠DEC=90°,
∵点G是AF的中点,
∴DG=GF,
作GH⊥DE于H,则GH∥BC,
∵∠HGF=∠ACB,
∵∠DGF=2∠HGF,∠ACD=2∠ACB,
∴∠DGF=∠ACD,
∴CD=DG=5,
又∵∠DEC=90°,EC=1,
∴DE==2.
故选:C.
科目:初中数学 来源: 题型:
【题目】△ABC和△ECD都是等边三角形,△EBC可以看作是△DAC经过平移、轴对称或旋转得到.
(1)如图1,当B,C,D在同一直线上,AC交BE于点F,AD交CE于点G,求证:CF=CG;
(2)如图2,当△ABC绕点C旋转至AD⊥CD时,连接BE并延长交AD于M,求证:MD=ME.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在△ABC中,AD是高,矩形PQMN的顶点P、N分别在AB、AC上,QM在边BC上.若BC=8cm,AD=6cm,
(1)PN=2PQ,求矩形PQMN的周长
(2)当PN为多少时矩形PQMN的面积最大,最大值为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学组织七、八、九年级学生参加全区作文比赛,该校将收到的参赛作文进行分年级统计,绘制了如图1和如图2两幅不完整的统计图,根据图中提供的信息完成以下问题.
(1)此次参赛的作文篇数共有 篇;
(2)扇形统计图中九年级参赛作文篇数对应的圆心角是 度,并补全条形统计图;
(3)经过评审,全校有4篇作文荣获特等奖,其中有一篇来自七年级,学校准备从特等奖作文中任选两篇刊登在校刊上,请利用画树状图或列表的方法求出七年级特等奖作文被选登在校刊上的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,大楼底右侧有一障碍物,在障碍物的旁边有一幢小楼DE,在小楼的顶端D处测得障碍物边缘点C的俯角为30°,测得大楼顶端A的仰角为45°(点B,C,E在同一水平直线上).已知AB=80m,DE=20m,求障碍物B,C两点间的距离.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.
(1)求证:∠A=∠AEB.
(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在数学兴趣小组的活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为2的正方形AEFG按图①位置放置,AD与AE在同一直线上,AB与AG在同一直线上.
⑴小明发现DG⊥BE,请你帮他说明理由.
⑵如图②,小明将正方形ABCD绕点A逆时针旋转,当点B恰好落在线段DG上时,请你帮他求出此时BE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】中学生带手机上学的现象越来越受到社会的关注,为此,某记者随机调查了某城区若干名学生家长对这种现象的态度(态度分为:A:无所谓;B:基本赞成;C:赞成;D:反对),并将调查结果绘制成频数折线图1和统计图2(不完整)。请根据图中提供的信息,解答下列问题:
(1)此次抽样检查中,共调查了 名学生家长;
(2)将图1补充完整;
(3)根据抽样检查的结果,请你估计该市城区6000名中学生家长中有多少名家长持反对态度?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com