【题目】四边形是的内接四边形,,,垂足为.
(1)如图1,求证:;
(2)如图2,点在的延长线上,且,连接、,求证:;
(3)如图3,在(2)的条件下,若,,求的值.
【答案】(1)证明见解析;(2)证明见解析;(3).
【解析】
(1)由圆周角定理得出∠DAC=∠CBD,证出∠ACB=90°∠CBD,由等腰三角形的性质得出∠ABC=∠ACB=90°∠CBD,得出∠BAC=180°2∠ABC=2∠CBD,即可得出结论;
(2)由等腰三角形的性质得出∠FCD=∠CFD,证出∠CFD=∠CAD,进而得出∠CFD=∠CBD,即可得出结论;
(3)证出AB=AF=AC=10设AE=x,CE=10x,由勾股定理得出AB2AE2=BC2CE2,得出102x2=(4)2(10x)2,求出AE=6,CE=4,由勾股定理得出BE=8,由三角函数定义得出,求出DE=3,由勾股定理得出AD=3,过点D作DH⊥AB,垂足为H,由面积法求出DH=,由三角函数定义即可得出答案.
(1)证明:如图1,
∵弧弧
∴
∵,
∴,
∴
∵,∴,
∴
∴
(2)证明:如图2,∵
∴
∴
∴
∵,
∴
∵
∴
∴
(3)解:如图3,∵,,
∴,∴垂直平分,
∴
设,,
在中,
在中,,
∴,∵
∴,解得
∴,
∴,
∵,
∴
∴,
∴
在中,
∴
过点作,垂足为
∴
∴
在中,
∴.
科目:初中数学 来源: 题型:
【题目】如图,过原点O的直线与双曲线y=交于上A(m,n)、B,过点A的直线交x轴正半轴于点D,交y轴负半轴于点E,交双曲线y=于点P.
(1)当m=2时,求n的值;
(2)当OD:OE=1:2,且m=3时,求点P的坐标;
(3)若AD=DE,连接BE,BP,求△PBE的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC(顶点是网格线的交点)和点A1.
(1)画出一个格点△A1B1C1,并使之是由△ABC平移后得到,且A与A1是对应点;
(2)画出点B关于直线AC的对称点D,并指出AD可以看作由AB绕A点经过怎样的旋转而得的;
(3)将△ABC绕点A逆时针旋转一定角度,使得AB落在(2)中的线段AD的位置,请作出旋转后的三角形,并求在这一旋转过程中△ABC扫过的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知一次函数 y=kx-2 的图象与 x 轴、y 轴分别交于 A,B 两点,与反比例函数的图象交于点 C,且 AB=AC,则 k 的值为( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在 Rt△ABC 中,∠C=90°,AD 平分∠BAC 交 BC 于点 D,O 为 AB 上一点,经过点 A、D 的⊙O 分别交 AB、AC 于点 E、F,
(1)求证:BC 是⊙O 切线;
(2)设 AB=m,AF=n,试用含 m、n 的代数式表示线段 AD 的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】扬州市“五个一百工程“在各校普遍开展,为了了解某校学生每天课外阅读所用的时间情况,从该校学生中随机抽取了部分学生进行问卷调查,并将结果绘制成如图不完整的频数分布表和频数分布直方图.
每天课外阅读时间t/h | 频数 | 频率 |
0<t≤0.5 | 24 | |
0.5<t≤1 | 36 | 0.3 |
1<t≤1.5 | 0.4 | |
1.5<t≤2 | 12 | b |
合计 | a | 1 |
根据以上信息,回答下列问题:
(1)表中a= ,b= ;
(2)请补全频数分布直方图;
(3)若该校有学生1200人,试估计该校学生每天课外阅读时间超过1小时的人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】△ABC中,∠ACB=45°,D为AC上一点,AD=5,连接BD,将△ABD沿BD翻折至△EBD,点A的对应点E点恰好落在边BC上.延长BC至点F,连接DF,若CF=2,tan∠ABD=,则DF长为( )
A.B.C.5D.7
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形是正方形,是等边三角形,为对角线(不含点)上任意一点,将绕点逆时针旋转60°得到,连接、、.
(1)求证;
(2)①当点在何处时,的值最小;
②当点在何处时,的值最小,并说明理由;
(3)当的最小值为时,求正方形的边长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】北盘江大桥坐落于云南宜威与贵州水城交界处,横跨云贵两省,为目前世界第一高桥图1是大桥的实物图,图2是从图1中引申出的平面图,测得桥护栏BG=1.8米,拉索AB与护栏的夹角是26°,拉索ED与护栏的夹角是60°,两拉索底端距离BD为300m,若两拉索顶端的距离AE为90m,请求出立柱AH的长.(tan26°≈0.5,sin26°≈0.4,1.7)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com