精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标xOy中,正比例函数y=kx的图象与反比例函数y= 的图象都经过点A(2,﹣2).

(1)分别求这两个函数的表达式;
(2)将直线OA向上平移3个单位长度后与y轴交于点B,与反比例函数图象在第四象限内的交点为C,连接AB,AC,求点C的坐标及△ABC的面积.

【答案】
(1)

解:根据题意,将点A(2,﹣2)代入y=kx,得:﹣2=2k,

解得:k=﹣1,

∴正比例函数的解析式为:y=﹣x,

将点A(2,﹣2)代入y= ,得:﹣2=

解得:m=﹣4;

∴反比例函数的解析式为:y=﹣


(2)

解:直线OA:y=﹣x向上平移3个单位后解析式为:y=﹣x+3,

则点B的坐标为(0,3),

联立两函数解析式 ,解得:

∴第四象限内的交点C的坐标为(4,﹣1),

∴SABC= ×(1+5)×4﹣ ×5×2﹣ ×2×1=6


【解析】(1)将点A坐标(2,﹣2)分别代入y=kx、y= 求得k、m的值即可;(2)由题意得平移后直线解析式,即可知点B坐标,联立方程组求解可得第四象限内的交点C得坐标,割补法求解可得三角形的面积.此题考查了反比例函数与一次函数的交点问题,涉及的知识有:坐标与图形性质,直线与坐标轴的交点,待定系数法求函数解析式,熟练掌握待定系数法是解本题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如果关于x的分式方程 ﹣3= 有负分数解,且关于x的不等式组 的解集为x<﹣2,那么符合条件的所有整数a的积是(  )
A.﹣3
B.0
C.3
D.9

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2016年3月27日“丽水半程马拉松竞赛”在莲都举行,某运动员从起点万地广场西门出发,途经紫金大桥,沿比赛路线跑回中点万地广场西门.设该运动员离开起点的路程S(千米)与跑步时间t(分钟)之间的函数关系如图所示,其中从起点到紫金大桥的平均速度是0.3千米/分,用时35分钟,根据图象提供的信息,解答下列问题:

(1)求图中a的值;
(2)组委会在距离起点2.1千米处设立一个拍摄点C,该运动员从第一次经过C点到第二次经过C点所用的时间为68分钟.
①求AB所在直线的函数解析式;
②该运动员跑完赛程用时多少分钟?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=2x2﹣3的图象是一条抛物线,下列关于该抛物线的说法,正确的是(  )
A.抛物线开口向下
B.抛物线经过点(2,3)
C.抛物线的对称轴是直线x=1
D.抛物线与x轴有两个交点

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,抛物线y=a(x+1)2﹣3与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C(0,﹣ ),顶点为D,对称轴与x轴交于点H,过点H的直线l交抛物线于P,Q两点,点Q在y轴的右侧.

(1)求a的值及点A,B的坐标;
(2)当直线l将四边形ABCD分为面积比为3:7的两部分时,求直线l的函数表达式;
(3)当点P位于第二象限时,设PQ的中点为M,点N在抛物线上,则以DP为对角线的四边形DMPN能否为菱形?若能,求出点N的坐标;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两组数据m,6,n与1,m,2n,7的平均数都是6,若将这两组数据合并成一组数据,则这组新数据的中位数为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,随着我市铁路建设进程的加快,现规划从A地到B地有一条笔直的铁路通过,但在附近的C处有一大型油库,现测得油库C在A地的北偏东60°方向上,在B地的西北方向上,AB的距离为250( +1)米.已知在以油库C为中心,半径为200米的范围内施工均会对油库的安全造成影响.问若在此路段修建铁路,油库C是否会受到影响?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,正方形OABC的顶点O与坐标原点重合,点C的坐标为(0,3),点A在x轴的负半轴上,点D、M分别在边AB、OA上,且AD=2DB,AM=2MO,一次函数y=kx+b的图象过点D和M,反比例函数y= 的图象经过点D,与BC的交点为N.

(1)求反比例函数和一次函数的表达式;
(2)若点P在直线DM上,且使△OPM的面积与四边形OMNC的面积相等,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,抛物线y=ax2+bx经过两点A(﹣1,1),B(2,2).过点B作BC∥x轴,交抛物线于点C,交y轴于点D.

(1)求此抛物线对应的函数表达式及点C的坐标;
(2)若抛物线上存在点M,使得△BCM的面积为 ,求出点M的坐标;
(3)连接OA、OB、OC、AC,在坐标平面内,求使得△AOC与△OBN相似(边OA与边OB对应)的点N的坐标.

查看答案和解析>>

同步练习册答案