【题目】已知一角的两边与另一个角的两边平行,分别结合下图,试探索这两个角之间的关系,并证明你的结论.
(1)如图(1)AB∥EF,BC∥DE,∠1与∠2的关系是:____________ .
(2)如图(2)AB∥EF,BC∥DE, ∠1与∠2的关系是:____________
(3)经过上述证明,我们可以得到一个真命题:如果____ _____,那么____________.
(4)若两个角的两边互相平行,且一个角比另一个角的2倍少30°,则这两个角分别是多少度?
【答案】(1)∠1=∠2,证明见解析;(2)∠1+∠2=180°,证明见解析;(3)一个角的两边与另一个角的两边分别平行,这两个角相等或互补;(4)这两个角分别是30°,30°或70°,110°.
【解析】
(1)根据两直线平行,内错角相等,可求出∠1=∠2;
(2)根据两直线平行,内错角相等及同旁内角互补可求出∠1+∠2=180°;
(3)由(1)(2)可得出结论;
(4)由(3)可列出方程,求出角的度数.
解:(1)AB∥EF,BC∥DE,∠1与∠2的关系是:∠1=∠2
证明:∵AB∥EF
∴∠1=∠BCE
∵BC∥DE
∴∠2=∠BCE
∴∠1=∠2.
(2)AB∥EF,BC∥DE.∠1与∠2的关系是:∠1+∠2=180°.
证明:∵AB∥EF
∴∠1=∠BCE
∵BC∥DE
∴∠2+∠BCE=180°
∴∠1+∠2=180°.
(3)经过上述证明,我们可以得到一个真命题:如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.
(4)解:设其中一个角为x°,列方程得x=2x-30或x+2x-30=180,
故x=30或x=70,
所以2x-30=30或110,
答:这两个角分别是30°,30°或70°,110°.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△PQR是△ABC经过某种变换后得到的图形,其中点A与点P,点B与点Q,点C与点R是对应的点,在这种变换下:
(1)直接写出下列各点的坐标
①A(____,_____)与P(_____,_____);B(_____,_____)与Q(______,_____);C(_____,______)与R(______,______)
②它们之间的关系是:______(用文字语言直接写出)
(2)在这个坐标系中,三角形ABC内有一点M,点M经过这种变换后得到点N,点N在三角形PQR内,其中M、N的坐标M(,6(a+b)﹣10),N(1﹣,4(b﹣2a)﹣6),求关于x的不等式﹣>b﹣1的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边AB在数轴上,数轴上点A表示的数为-1,正方形ABCD的面积为16.
(1)数轴上点B表示的数为___;
(2)将正方形ABCD沿数轴水平移动,移动后的正方形记为A′B′C′D′,移动后的正方形A′B′C′D′与原正方形ABCD重叠部分的面积为S.
①当S=4时,画出图形,并求出数轴上点A′表示的数;
②设正方形ABCD的移动速度为每秒2个单位长度,点E为线段AA′的中点,点F在线段BB′上,且BF=BB′.经过t秒后,点E,F所表示的数互为相反数,直接写出t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一个不透明的盒子中装有大小和形状相同的3个红球和2个白球,把它们充分搅匀.
(1)“从中任意抽取1个球不是红球就是白球”是 事件,“从中任意抽取1个球是黑球”是 事件;
(2)从中任意抽取1个球恰好是红球的概率是 ;
(3)学校决定在甲、乙两名同学中选取一名作为学生代表发言,制定如下规则:从盒子中任取两个球,若两球同色,则选甲;若两球异色,则选乙.你认为这个规则公平吗?请用列表法或画树状图法加以说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知直线AB∥CD,直线L和直线AB,CD分别交于点E,F,直线L上有一动点P.
(1)如图1,点P在E,F之间运动时,∠PMB,∠MPN,∠PND之间有什么关系,并说明理由;
(2)若点P在E,F两点外侧运动时,如图2和图3(P点与E,F不重合),试直接写出∠PMB,∠MPN,∠PND之间有什么关系,不必写理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx﹣2与x轴交于点A、B(点A在点B的左侧),与y轴交于点C(0,﹣2),OB=4OA,tan∠BCO=2.
(1)求A、B两点的坐标;
(2)求抛物线的解析式;
(3)点M、N分别是线段BC、AB上的动点,点M从点B出发以每秒个单位的速度向点C运动,同时点N从点A出发以每秒2个单位的速度向点B运动,当点M、N中的一点到达终点时,两点同时停止运动.过点M作MP⊥x轴于点E,交抛物线于点P.设点M、点N的运动时间为t(s),当t为多少时,△PNE是等腰三角形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y=ax2+bx的图象经过点A(2,4)与B(6,0).
(1)求a,b的值;
(2)点C是该二次函数图象上A,B两点之间的一动点,横坐标为x(2<x<6),写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列各式,........请按照上述三个等式及其变化过程,回答下列问题。
(1)猜想________________.
(2)猜想_____________________=.
(3)试猜想第N个等式为_____________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD纸片中,已知∠A=160°,∠B=30°,∠C=60°,四边形ABCD纸片分别沿EF,GH,OP,MN折叠,使A与A′、B与B′、C与C′、D与D′重合,则∠1+∠2+∠3+∠4+∠5+∠6+∠7﹣∠8的值是( )
A. 600° B. 700° C. 720° D. 800°
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com