【题目】已知二次函数y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,与x轴的一个交点B的坐标为(1,0)其图象如图所示,下列结论:①abc>0;②2a﹣b=0;③一元二次方程ax2+bx+c=0的两个根是﹣3和1;④当y>0时,﹣3<x<1;⑤当x>0时,y随x的增大而增大:⑥若点E(﹣4,y1),F(﹣2,y2),M(3,y3)是函数图象上的三点,则y1>y2>y3,其中正确的有( )个
A.5B.4C.3D.2
【答案】C
【解析】
根据抛物线的开口方向、对称轴、顶点坐标、增减性逐个进行判断,得出答案.
由抛物线的开口向上,可得a>0,对称轴是x=﹣1,可得a、b同号,即b>0,抛物线与y轴交在y轴的负半轴,c<0,因此abc<0,故①不符合题意;
对称轴是x=﹣1,即﹣=﹣1,即2a﹣b=0,因此②符合题意;
抛物线的对称轴为x=﹣1,与x轴的一个交点B的坐标为(1,0),可知与x轴的另一个交点为(﹣3,0),因此一元二次方程ax2+bx+c=0的两个根是﹣3和1,故③符合题意;
由图象可知y>0时,相应的x的取值范围为x<﹣3或x>1,因此④不符合题意;
在对称轴的右侧,y随x的增大而增大,因此当x>0时,y随x的增大而增大是正确的,因此⑤符合题意;
由抛物线的对称性,在对称轴的左侧y随x的增大而减小,
∵﹣4<﹣2,
∴y1>y2,(3,y3)l离对称轴远
因此y3>y1,因此y3>y1>y2,因此⑥不符合题意;
综上所述,正确的结论有3个,
故选:C.
科目:初中数学 来源: 题型:
【题目】小玲和弟弟小东分别从家和图书馆同时出发,沿同一条路相向而行,小玲开始跑步中途改为步行,到达图书馆恰好用30min.小东骑自行车以300m/min的速度直接回家,两人离家的路程y(m)与各自离开出发地的时间x(min)之间的函数图象如图所示
(1)家与图书馆之间的路程为多少m,小玲步行的速度为多少m/min;
(2)求小东离家的路程y关于x的函数解析式,并写出自变量的取值范围;
(3)求两人相遇的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,A,B是反比例函数(k≠0)图象上的两点,延长线段AB交y轴于点C,且B为线段AC的中点,过点A作AD⊥x轴于点D,E为线段OD的三等分点,且OE<DE.连接AE,BE.若S△ABE=7,则k的值为_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某初中学校餐厅为了解学生对早餐的要求,随即抽样调查了该校的部分学生,并根据其中两个单选问题的调查结果,绘制了如下尚不完整的统计图表.
学生能接受的早餐价格统计表
价格分组(单位:元) | 频数 | 频率 |
0<x≤2 | 60 | 0.15 |
2<x≤4 | 180 | c |
4<x≤6 | 92 | 0.23 |
6<x≤8 | a | 0.12 |
x>8 | 20 | 0.05 |
合计 | b | 1 |
根据以上信息解答下列问题:
(1)统计表中,a= ,b= ,c= .
(2)扇形统计图中,m的值为 ,“甜”所对应的圆心角的度数是 .
(3)该餐厅计划每天提供早餐2000份,其中咸味大约准备多少份较好?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场要经营一种文具,进价为20元/件,试营销阶段发现:当销售价格为25元/件时,每天的销售量为250件,每件销售价格每上涨1元,每天的销售量就减少10件.
(1)当每天的利润为1440元时,为了让利给顾客,每件文具的销售价格应定为多少元?
(2)设每天的销售利润为W元,每件文具的销售价格为x元,如果要求每天的销售量不少于10件,且每件文具的利润至少为25元.
①求W与x的函数关系式,并写出自变量的取值范围;
②问当销售价格定为多少时,该文具每天的销售利润最大,最大利润为多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,第二次由持球者将球再随机传给其他三人中的某一人.
(1)第一次传球后球到乙手里的概率为 ;
(2)画树状图或列表求第二次传球后球回到甲手里的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P为射线BD,CE的交点.
(1)求证:BD=CE;
(2)若AB=2,AD=1,把△ADE绕点A旋转,当∠EAC=90°时,求PB的长;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,抛物线y=ax2+bx﹣3a(a≠0)经过点A(﹣1,0).
(1)求抛物线的顶点坐标;(用含a的式子表示)
(2)已知点B(3,4),将点B向左平移3个单位长度,得到点C.若抛物线与线段BC恰有一个公共点,结合函数的图象,求a的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com