【题目】如图,直角梯形ABCD中,AB∥CD,∠DAB=90°,且∠ABC=60°,AB=BC,△ACD的外接圆⊙O交BC于E点,连接DE并延长,交AC于P点,交AB延长线于F.
(1)求证:CF=DB;
(2)当AD= 时,试求E点到CF的距离.
【答案】
(1)证明:连结AE,如图,
∵∠ABC=60°,AB=BC,
∴△ABC为等边三角形,
∵AB∥CD,∠DAB=90°,
∴∠ADC=∠DAB=90°,
∴AC为⊙O的直径,
∴∠AEC=90°,即AE⊥BC,
∴BE=CE,
CD∥BF,
∴∠DCE=∠FBE,
在△DCE和△FBE中,
,
∴△DCE≌△FBE(ASA),
∴DE=FE,
∴四边形BDCF为平行四边形,
∴CF=DB
(2)解:作EH⊥CF于H,如图,
∵△ABC为等边三角形,
∴∠BAC=60°,
∴∠DAC=30°,
在Rt△ADC中,AD= ,
∴DC= AD=1,AC=2CD=2,
∴AB=AC=2,BF=CD=1,
∴AF=3,
在Rt△ABD中,BD= =
,
在Rt△ADF中,DF= =2
,
∴CF=BD= ,EF=
DF=
,
∵AE⊥BC,
∴∠CAE=∠BAE=30°,
∴∠EDC=∠CAE=30°,
而∠DCA=∠BAC=60°,
∴∠DPC=90°,
在Rt△DPC中,DC=1,∠CDP=30°,
∴PC= DC=
,
∵∠HFE=∠PFC,
∴Rt△FHE∽Rt△FPC,
∴ ,即
=
,
∴EH= ,
即E点到CF的距离为 .
【解析】(1)连结AE,由∠ABC=60°,AB=BC可判断△ABC为等边三角形,由AB∥CD,∠DAB=90°得∠ADC=∠DAB=90°,则根据圆周角定理可得到AC为⊙O的直径,则∠AEC=90°,即AE⊥BC,根据等边三角形的性质得BE=CE,再证明△DCE≌△FBE,得到DE=FE,于是可判断四边形BDCF为平行四边形,根据平行四边形的性质得CF=DB;(2)作EH⊥CF于H,由△ABC为等边三角形得∠BAC=60°,则∠DAC=30°,在Rt△ADC中,根据含30度的直角三角形三边的关系得DC= AD=1,AC=2CD=2,则AB=AC=2,BF=CD=1,AF=3,然后利用勾股定理计算出BD=
,DF=2
,所以CF=BD=
,EF=
DF=
,接着根据等边三角形的性质由AE⊥BC得∠CAE=∠BAE=30°,根据圆周角定理得∠EDC=∠CAE=30°,而∠DCA=∠BAC=60°,得到∠DPC=90°,在Rt△DPC中,根据含30度的直角三角形三边的关系得PC=
DC=
,再证明Rt△FHE∽Rt△FPC,利用相似比可计算出EH.
科目:初中数学 来源: 题型:
【题目】已知,如图,在ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.
(1)求证:△AEM≌△CFN;
(2)求证:四边形BMDN是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,O是直线AB上的一点,C是直线AB外的一点,OD是∠AOC的平分线,
OE是∠COB的平分线.
(1)已知∠1=23°,求∠2的度数;
(2)无论点C的位置如何改变,图中是否存在一个角,它的大小始终不变(∠AOB除外)?如果存在,求出这个角的度数;如果不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】合并下列多项式中的同类项:
(1)3x2+4x﹣2x2﹣x+x2﹣3x﹣1;
(2)﹣a2b+2a2b;
(3)a3﹣a2b+ab2+a2b﹣2ab2+b3;
(4)2a2b+3a2b﹣a2b
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,二次函数y= x2+bx+c的图象与x轴交于A(3,0),B(﹣1,0),与y轴交于点C.若点P,Q同时从A点出发,都以每秒1个单位长度的速度分别沿AB,AC边运动,其中一点到达端点时,另一点也随之停止运动.
(1)求该二次函数的解析式及点C的坐标;
(2)当点P运动到B点时,点Q停止运动,这时,在x轴上是否存在点E,使得以A,E,Q为顶点的三角形为等腰三角形?若存在,请求出E点坐标;若不存在,请说明理由.
(3)当P,Q运动到t秒时,△APQ沿PQ翻折,点A恰好落在抛物线上D点处,请判定此时四边形APDQ的形状,并求出D点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,三角形ABC三个顶点A,B,C的坐标分别为A(1,2),B(4,3),C(3,1).
(1)三角形A1B1C1向右平移4个单位长度,再向下平移3个单位长度,恰好得到三角形ABC,试写出三角形A1B1C1三个顶点的坐标.
(2)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】画图并计算:已知线段AB=2 cm,延长线段AB至点C,使得2BC=AB,再反向延长AC至点D,使得AD=AC.
(1)准确地画出图形,并标出相应的字母;
(2)线段DC的中点是哪个?线段AB的长是线段DC长的几分之几?
(3)求出线段BD的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是边长为6的等边三角形,P是AC边上一动点,由A向C运动(与A、C不重合),Q是CB延长线上一点,与点P同时以相同的速度由B向CB延长线方向运动(Q不与B重合),过P作PE⊥AB于E,连接PQ交AB于D.
(1)当∠BQD=30°时,求AP的长;
(2)当运动过程中线段ED的长是否发生变化?如果不变,求出线段ED的长;如果变化请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com