精英家教网 > 初中数学 > 题目详情

【题目】如图,已知在△ABC中,AB=AC,BC=12厘米,点D为AB上一点且BD=8厘米,点P在线段BC上以2厘米/秒的速度由B点向C点运动,设运动时间为t,同时,点Q在线段CA上由C点向A点运动.

(1)用含t的式子表示PC的长为_______________;

(2)若点Q的运动速度与点p的运动速度相等,当t=2时,三角形BPD与三角形CQP是否全等,请说明理由;

(3)若点Q的运动速度与点P的运动速度不相等,请求出点Q的运动速度是多少时,能够使三角形BPD与三角形CQP全等?

【答案】(1)PC=12-2t(2)ΔBPDΔCQP理由见详解;(3) cm/s

【解析】

(1)根据BC=12cm,点P在线段BC上以2厘米/秒的速度由B点向C点运动,所以当t秒时,运动2t,因此PC=12-2t.(2)若点Q的运动速度与点p的运动速度相等,当t=2s时,则CQ=4cm,BP=4cm,因为BC=12cm,所以PC=8cm,又因为BD=8cm,AB=AC,所以∠B=∠C,因此求出ΔBPD≌ΔCQP.(3) 已知∠B=∠C,BP≠CQ,根据ΔBPD≌ΔCQP得出 BP=PC,进而算出时间t,再算出v即可.

(1)由题意得出:PC=12-2t

(2)若点Q的运动速度与点p的运动速度相等,当t=2s时,则CQ=4cm,BP=4cm,∵ BC=12cm,∴PC=8cm,又∵BD=8cm,AB=AC,∴∠B=∠C,在ΔBPD和ΔCQP中,CQ=BP, ∠B=∠C,PC=BD,∴ΔBPD≌ΔCQP(SAS).

(3)若点Q的运动速度与点P的运动速度不相等,∵Vp≠VQ,∴BP≠CQ,又∵△BPD≌△CPQ,∠B=∠C,则BP=PC=6cm,CQ=BD=8cm,∴点P、点Q运动的时间 t= =3s ,

∴VQ ===cm/s,即Q的速度为cm/s.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】问题背景:在正方形ABCD的外侧,作△ADE△DCF,连结AFBE.特例探究:如图,若△ADE△DCF均为等边三角形,试判断线段AFBE的数量关系和位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将长方形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点F处,折痕为BE(如图1);再沿过点E的直线折叠,使点D落在BE上的点D′处,折痕为EG(如图2);再展平纸片(如图3),则图3中∠α的大小为()

A.30°B.25.5°C.20°D.22.5°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABC中∠BAC=150°,ABAC的垂直平分线分别交BCEF.则∠EAF的度数为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCDEF中,ABDE,点AFCD在同一直线上,AFCD,∠AFE=∠BCD

试说明:

1ABC≌△DEF

2BFEC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1()2 017×161 008

2(8a6b3)2÷(2a2b)

3)因式分解:a2b-b3

4)因式分解:﹣3x3+6x2y3xy2

5)解方程:

6)解方程: =0

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD中,∠ABC90°AB4BC3CD12AD13.求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD的边BCx轴重合,B、C对应的横坐标是一元二次方程的两根,EADy轴的交点,其纵坐标为2,过A、C作直线交y轴于F.

(1)求直线AF的解析式.

(2)MBC上一点,其横坐标为2,在坐标轴上,你能否找到一点P,使?若能,求出点P的坐标;若不能,请说明理由.

(3)点Qx轴上一动点连接AQ,Q在运动过程中AQ+是否存在最小值若存在,请求出AQ+最小值及Q的坐标;若不存在,请说明理由.

备用图

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,CDAB,BEAC,垂足分别为点D,E,BECD相交于点O.1=2,则图中全等三角形共有( )

A. 4B. 3C. 2D. 5

查看答案和解析>>

同步练习册答案