精英家教网 > 初中数学 > 题目详情

如图,在矩形ABCD中,AB=12cm,BC=8cm.点E、F、G分别从点A、B、C同时出发,沿矩形的边按逆时针方向移动,点E、G的速度均为2cm/s,点F的速度为4cm/s,当点F追上点G(即点F与点G重合)时,三个点随之停止移动.设移动开始后第ts时,△EFG的面积为Scm2

     

(1)当=1s时,S的值是多少?

(2) 当时,点E、F、G分别在边AB、BC、CD上移动,用含t的代数式表示S;当时,点E在边AB上移动,点F、G都在边CD上移动,用含t的代数式表示S.

(3)若点F在矩形的边BC上移动,当为何值时,以点B、E、F为顶点的三角形与以C、F、G为顶点的三角形相似?请说明理由


(2)①如图1,当时,点E、F、G分别在边AB、BC、CD

上移动,此时

 即).                  (5分)

②如图2当点F追上点G时,,解得

时,点E在边AB上移动,点F、G都在边CD上移动,

此时CF=.CG=,FG=CG-CF=.

  ()                             (7分)

(3)如图1,当点F在矩形的边BC上移动时,.

在△EBF和△FCG中,∠B=∠C=90°,

①若.即,解得,              (10分)

满足,所以当时,△EBF∽△FCG,

                                 (14分)

考点:1.相似三角形的判定;2.一次函数的应用;3.三角形的面积;4.矩形的性质.

 

练习册系列答案
相关习题

科目:初中数学 来源: 题型:


 如图,在Rt△ABC中,∠C=90°,∠A=45°,AB=2.将△ABC绕顶点A顺时针方向旋转至△AB′C′的位置,B,A,C′三点共线,则线段BC扫过的区域面积为      

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).

(1)当点P在线段DE上运动时,线段DP的长为______cm,(用含t的代数式表示).

(2)当点N落在AB边上时,求t的值.

(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm²),求S与t的函数关系式.

(4)连结CD.当点N于点D重合时,有一点H从点M出发,在线段MN上以2.5cm/s的速度沿M-N-M连续做往返运动,直至点P与点E重合时,点H停止往返运动;当点P在线段EB上运动时,点H始终在线段MN的中心处.直接写出在点P的整个运动过程中,点H落在线段CD上时t的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC所在的直线建立平面直角坐标系,抛物线经过A、B两点。若一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,分别交线段OA、CA和抛物线于点E、M和点P,连结PA、PB.设直线l移动的时间为t(0<t<4)秒,求四边形PBCA的面积S(面积单位)与t(秒)的函数关系式,并求出四边形PBCA的最大面积。

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,已知抛物线经过点A,B及原点O,顶点为C,直线OB为,点P是抛物线上的动点,过点P作PM⊥x轴,垂足为M,是否存在点P,使得以P,M,A为顶点的三角形与△BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:


 在平面直角坐标系中,已知抛物线(a,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,﹣1),C的坐标为(﹣4,3),直角顶点B在第二象限。

(1)如图,若该抛物线过A,B两点,求该抛物线的函数表达式;

(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与AC交于另一点Q,若点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M、P、Q三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,反比例函数在第一象限内的图象经过点A,与BC交于点F,OB=,BF=BC。过点F作EF∥OB,交OA于点,点P为直线EF上的一个动点,连接PA,PO。若以P、O、A为顶点的三角形是直角三角形,请求出所有点P的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,AB是⊙O的一条弦,点C是⊙O优弧AB上一动点,且∠ACB=45°,点E、F分别是AC、BC的中点,直线EF与⊙O交于G、H两点,若⊙O的半径为7,则GE+FH的最大值为        

查看答案和解析>>

科目:初中数学 来源: 题型:


如图是一组密码的一部分.为了保密,许多情况下可采用不同的密码,请你运用所学知识找到破译的“钥匙”。目前,已破译出“正做数学”的真实意思是“祝你成功”。若“正”所处的位置为(x,y),你找到的密码钥匙是       ,破译的“今天考试”真实意思是       

查看答案和解析>>

同步练习册答案