精英家教网 > 初中数学 > 题目详情

【题目】甲、乙两个工厂需加工生产 550 台某种机器,已知甲工厂每天加工生产的机器台数是乙工厂每天加工 生产的机器台数的 1.5 倍,并且加工生产 240 台这种机器甲工厂需要的时间比乙工厂需要的时间少 4

1)求甲、乙两个工厂每天分别可以加工生产多少台这种机器?

2)若甲工厂每天加工的生产成本是 3 万元,乙工厂每天加工生产的成本是 2.4 万元,要使得加工生 产这批机器的总成本不得高于 60 万元,至少应该安排甲工厂生产多少天?

【答案】1)甲、乙两个工厂每天分别可以加工生产3020台这种机器;(2)至少应该安排甲工厂生产10

【解析】

1)设乙工厂每天加工生产的机器台数为x,根据题意列出方程即可求出答案.

2)设应该安排甲工厂生产x天,根据题意列出一元一次不等式即可求出答案.

1)设乙工厂每天加工生产的机器台数为x,则甲工厂每天加工生产的机器台数为1.5x

根据题意可知:

解得:x=20

经检验,x=20是原方程的解,

答:甲、乙两个工厂每天分别可以加工生产3020台这种机器.

2)设应该安排甲工厂生产x天,

根据题意可知:3x+2.4×≤60

解得:x≥10

答:至少应该安排甲工厂生产10

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】2019年全国两会于35日在人民大会堂开幕,某社区为了解居民对此次两会的关注程度,在全社区范围内随机抽取部分居民进行问卷调查,根据调查结果,把居民对两会的关注程度分成淡薄一般较强很强四个层次,并绘制成如下不完整的统计图:

请结合图表中的信息,解答下列问题:

(1)此次调查一共随机抽取了_____名居民;

(2)请将条形统计图补充完整;

(3)扇形统计图中,很强所对应扇形圆心角的度数为_____

(4)若该社区有1500人,则可以估计该社区居民对两会的关注程度为淡薄层次的约有 _____.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】榴莲上市的时候,某水果行以线上线下相结合的方式一共销售了箱榴莲.已知线上销售的每箱利润为元.线下销售的每箱利润(元)与销售量(箱)之间的函数关系如图中的线段

1)求之间的函数关系.

2)当线下的销售利润为元时,求的值.

3)实际线下销售时,每箱还要支出其它费用,若线上线下售完这箱榴莲所获得的最大总利润为元,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校了解九年级学生近两个月推荐书目的阅读情况,随机抽取了该年级的部分学生,调查了他们每人推荐书目的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n3时,为偏少;当3≤n5时,为一般;当5≤n8时,为良好;当n≥8时,为优秀.将调查结果统计后绘制成不完整的统计图表:

阅读本数n(本)

1

2

3

4

5

6

7

8

9

人数(名)

1

2

6

7

12

x

7

y

1

请根据以上信息回答下列问题:

1)分别求出统计表中的xy的值;

2)估计该校九年级400名学生中为优秀档次的人数;

3)从被调查的优秀档次的学生中随机抽取2名学生介绍读书体会,请用列表或画树状图的方法求抽取的2名学生中有1名阅读本数为9的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点AB在反比例函数y(x0)的图象上,点CD在反比例函数y(k0)的图象上,ACBDy轴,已知点AB的横坐标分别为12,△OAC与△ABD的面积之和为,则k的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB4,∠DCA30°,点F是对角线AC上的一个动点,连接DF,以DF为斜边作∠DFE30°的直角三角形DEF,使点E和点A位于DF两侧,点F从点A到点C的运动过程中,点E的运动路径长是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,已知抛物线yax2+bx5x轴交于A(﹣10),B50)两点,与y轴交于点C

1)求抛物线的函数表达式;

2)如图2CEx轴与抛物线相交于点E,点H是直线CE下方抛物线上的动点,过点H且与y轴平行的直线与BCCE分别相交于点FG,试探究当点H运动到何处时,四边形CHEF的面积最大,求点H的坐标;

3)若点K为抛物线的顶点,点M4m)是该抛物线上的一点,在x轴,y轴上分别找点PQ,使四边形PQKM的周长最小,求出点PQ的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看次的人数没有标出).

根据上述信息,解答下列各题:

×

(1)该班级女生人数是__________,女生收看“两会”新闻次数的中位数是________;

(2)对于某个群体,我们把一周内收看某热点新闻次数不低于次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低,试求该班级男生人数;

(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).

统计量

平均数(次)

中位数(次)

众数(次)

方差

该班级男生

根据你所学过的统计知识,适当计算女生的有关统计量,进而比较该班级男、女生收看“两会”新闻次数的波动大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1是一台实物投影仪,图2是它的示意图,折线OABC表示支架,支架的一部分OAB是固定的,另一部分BC是可旋转的,线段CD表示投影探头,OM表示水平桌面,AOOM,垂足为点O,且AO7cm,∠BAO160°,BCOMCD8cm

将图2中的BC绕点B向下旋转45°,使得BCD落在BCD′的位置(如图3所示),此时CD′⊥OMAD′∥OMAD′=16cm,求点B到水平桌面OM的距离,(参考数据:sin70°≈0.94cos70°≈0.34cot70°≈0.36,结果精确到1cm

查看答案和解析>>

同步练习册答案